首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12篇
  免费   0篇
  2024年   1篇
  2023年   1篇
  2021年   1篇
  2014年   2篇
  2013年   2篇
  2006年   2篇
  2005年   1篇
  2002年   1篇
  1996年   1篇
排序方式: 共有12条查询结果,搜索用时 31 毫秒
1.
Anaerobic digesters have been responsible for the removal of large fraction of organic matter (mineralization of waste sludge) in conventional aerobic sewage treatment plants since the early years of domestic sewage treatment (DST). Attention on the anaerobic technology for improving the sustainability of sewage treatment has been paid mainly after the energy crisis in the 1970s. The successful use of anaerobic reactors (especially up-flow anaerobic sludge blanket (UASB) reactors) for the treatment of raw domestic sewage in tropical and sub-tropical regions (where ambient temperatures are not restrictive for anaerobic digestion) opened the opportunity to substitute the aerobic processes for the anaerobic technology in removal of the influent organic matter. Despite the success, effluents from anaerobic reactors treating domestic sewage require post-treatment in order to achieve the emission standards prevailing in most countries. Initially, the composition of this effluent rich in reduced compounds has required the adoption of post-treatment (mainly aerobic) systems able to remove the undesirable constituents. Currently, however, a wealth of information obtained on biological and physical-chemical processes related to the recovery or removal of nitrogen, phosphorus and sulfur compounds creates the opportunity for new treatment systems. The design of DST plant with the anaerobic reactor as core unit coupled to the pre- and post-treatment systems in order to promote the recovery of resources and the polishing of effluent quality can improve the sustainability of treatment systems. This paper presents a broader view on the possible applications of anaerobic treatment systems not only for organic matter removal but also for resources recovery aiming at the improvement of the sustainability of DST.  相似文献   
2.
Inorganic cesium lead halide perovskites have evoked wide popularity because of their excellent optoelectronic properties, high photoluminescence (PL) quantum yield (PLQY), and narrowband emission. Here, cesium lead bromide (CsPbBr3) quantum dots (QDs) were synthesized via the ligand-assisted re-precipitation method. Post-synthesis treatment of CsPbBr3 QDs using antimony tribromide improved the PL stability and optoelectronic properties of the QDs. In addition, the PLQY of the post-treated sample was enhanced to 91% via post-treatment, and the luminescence observed was maintained for 8 days. The post-synthesis treatment ensured defect passivation and improved the stability of CsPbBr3 perovskite QDs. High-resolution transmission electron microscopy revealed the presence of more ordered, uniform-sized CsPbBr3 QDs after post-synthesis treatment, and the uniformity of the sample improved as the day passed. The formation of a mixed crystal phase was observed from X-ray diffraction in both as-synthesized, as well as post-treated QDs samples with the possibility of a polycrystalline nature in the post-treated CsPbBr3 QDs as per the selected area electron diffraction pattern. The X-ray photoelectron spectroscopy spectra confirmed the presence of antimony and the possibility of defect passivation in the post-treated samples. These QDs can act as potential candidates in various optoelectronic applications such as photodetectors and light-emitting diodes due to their high PLQY and longer lifetime.  相似文献   
3.
4.
Content of endogenous abscisic acid (ABA) increased in rice plants under salt stress. Pre- or post-treatment by jasmonic acid (JA) mostly further increased ABA content. In the presence of salt stress also content of gibberellins (GAs) mostly increased more after treatment by JA. Endogenous content of bioactive GA1 was higher in post-treatment by JA than in pre-treatment by JA.This study was supported by the Korea Science and Engineering Foundation (2000-2-20100-001-3)  相似文献   
5.
Previous works (Beccari et al. 1999b; Beccari et al. 2001a; Beccari et al. 2001b)on the anaerobic treatment of olive oil mill effluents (OME) have shown: (a) apre-treatment based on the addition of Ca(OH)2 and bentonite was able toremove lipids (i.e. the most inhibiting substances present in OME) almostquantitatively; (b) the mixture OME – Ca(OH)2 – bentonite, fed to amethanogenic reactor without providing an intermediate phase separation,gave way to high biogas production even at very low dilution ratios; (c) theeffluent from the methanogenic reactor still contained significant concentrationsof residual phenolic compounds (i.e. the most biorecalcitrant substances present inOME). Consequently, this paper was aimed at evaluating the fate of the phenolicfractions with different molecular weights during the sequence of operations(adsorption on bentonite, methanogenic digestion, activated sludge post-treatment).The results show that a very high percentage (above 80%) of the phenolic fractionbelow 500 D is removed by the methanogenic process whereas the phenolic fractionsabove 1,000 D are significantly adsorbed on bentonite; the 8-day activated sludgepost-treatment allows an additional removal of about 40% of total filtered phenoliccompounds. The complete sequence of treatments was able to remove more than the96% of the phenolic fraction below 500 D (i.e. the most toxic fraction towards plantgermination). Preliminary respirometric tests show low level of inhibition exerted bythe effluent from the methanogenic reactor on aerobic activated sludges taken fromfull-scale municipal wastewater plants.  相似文献   
6.
Abstract

This study evaluates the bio-treatability performance and kinetic models of full-scale horizontal subsurface flow constructed wetland used for the tertiary treatment of composite industrial effluent characterized by high-salt content ranging from 5830 to 10,400 µS/cm and biochemical oxygen demand (BOD5): chemical oxygen demand (COD) ratio below 0.2. The wetland vegetated with Phragmites australis was operated in a semi-arid climate under an average hydraulic loading rate of 63?mm/d. The results of a 4-year operation calculated based on the concentration of pollutants showed that the average removal efficiency of COD, BOD5, and total suspended solids (TSS) were 17.5, 5.1, and 11.2%, respectively. The system reduced up to 6.5?±?0.7% of electrical conductivity presenting poor phyto-desalination potential without considering the contribution of evapotranspiration in water balance in contrast to satisfying performance for heavy metals reduction. The comparison of the kinetics of organic matter removal obtained by the first-order and Monod models paired with continuous stirred-tank reactor and plug flow regime showed that Monod-plug flow model provided the best fit with the constants of 2.01?g COD/m2·d and 0.3014?g BOD5/m2·d with the best correlation coefficient of 0.610 and 0.968 between the predicted and measured concentrations, respectively. The low kinetic rates indicate that the process is capable of effluent polishing instead of purification due to the presence of organic compounds recalcitrant to biodegradation and a high level of salinity.  相似文献   
7.
Glutaraldehyde (GLUT) was evaluated for control of single and dual species biofilms of Bacillus cereus and Pseudomonas fluorescens on stainless steel surfaces using a chemostat system. The biofilms were characterized in terms of mass, cell density, total and matrix proteins and polysaccharides. The control action of GLUT was assessed in terms of inactivation and removal of biofilm. Post-biocide action was characterized 3, 7, 12, 24, 48 and 72 h after treatment. Tests with planktonic cells were also performed for comparison. The results demonstrated that in dual species biofilms the metabolic activity, cell density and the content of matrix proteins were higher than those of either single species. Planktonic B. cereus was more susceptible to GLUT than P. fluorescens. The biocide susceptibility of dual species planktonic cultures was an average of each single species. Planktonic cells were more susceptible to GLUT than their biofilm counterparts. Biofilm inactivation was similar for both of the single biofilms while dual biofilms were more resistant than single species biofilms. GLUT at 200 mg l?1 caused low biofilm removal (<10%). Analysis of the post-biocide treatment data revealed the ability of biofilms to recover their activity over time. However, 12 h after biocide application, sloughing events were detected for both single and dual species biofilms, but were more marked for those formed by P. fluorescens (removal >40% of the total biofilm). The overall results suggest that GLUT exerts significant antimicrobial activity against planktonic bacteria and a partial and reversible activity against B. cereus and P. fluorescens single and dual species biofilms. The biocide had low antifouling effects when analysed immediately after treatment. However, GLUT had significant long-term effects on biofilm removal, inducing significant sloughing events (recovery in terms of mass 72 h after treatment for single biofilms and 42 h later for dual biofilms). In general, dual species biofilms demonstrated higher resistance and resilience to GLUT exposure than either of the single species biofilms. P. fluorescens biofilms were more susceptible to the biocide than B. cereus biofilms.  相似文献   
8.
Post-treatments are necessary if anaerobic effluents need to be discharged into surface waters, because anaerobic digestion alone is not able to produce effluents that can meet the discharge standards applied in most industrialized countries, particularly for suspended solids, particulate COD, nitrogen, phosphorus and sulphides. This paper has the aim to present some results obtained in the recent years in our laboratory, where different comprehensive processes that include anaerobic digestion have been studied. Discussion will regard: 1) the ANANOX (ANaerobic-ANoxic-OXic) process for the treatment of municipal wastewater; 2) a process studied for the biological removal of C, N and P from piggery wastewater that has a hybrid anaerobic/anoxic reactor as the first treatment step; 3) the use of a Sequencing Batch Reactor for the post-treatment of digested cheese whey mixed with cheese factory cleaning waters.Abbreviations ABR Anaerobic Baffled Reactor - Bv organic volumetric loading rate (gCOD·L-1·d-1) - BV bed volumes - F/M food to microorganism ratio or sludge loading rate (gCOD·g.VSS-1·d-1) - HRT hydraulic retention time (t) - JHB University of Johannesburg nutrient removal process - p.e. person equivalent - Qrd recycle for denitrification flow rate - Qrs sludge recycle flow rate - SBR Sequencing Batch Reactor - TKN Total Kjeldahl Nitrogen - VCF Volumetric Concentration Factor (vol. permeate/vol. retentate)  相似文献   
9.
Post-Treatment Options for the Anaerobic Treatment of Domestic Wastewater   总被引:1,自引:0,他引:1  
This paper focuses on the post-treatment options for the anaerobic treatment of domestic wastewater. Initially, the main limitations of anaerobic systems regarding carbon, nutrients and pathogen removal are presented. In sequence, the advantages of combined anaerobic/aerobic treatment and the main post-treatment options currently in use are discussed, including the presentation of flowsheets and a comparison between various post-treatment systems. Lastly, the paper presents a review of emerging options and possible improvements of current post-treatment alternatives.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号