首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
  2013年   1篇
  2004年   1篇
  1991年   1篇
  1987年   1篇
排序方式: 共有4条查询结果,搜索用时 0 毫秒
1
1.
Summary The rate of transport of amine ions intoChara australis internodes is studied by measuring changes in membrane current when amine solutions are presented to voltage-clamped cells. The dependence of this rate on ion concentration is investigated for a series of alkyl-amine ions: methyl-, ethyl-, isopropyl-, dimethyl-, trimethyl- and tetramethylammonium. A Michaelis-Menten relationship is displayed by all except tri- and tetramethylammonium, where currents are irregular and difficult to reproduce. Evidence suggests that the different ions cross the plasmalemma via a common uniport.K M values for this porter increase as the amine ion becomes more highly substituted. TheV m values are similar for all amines and lie within the range 10 to 100 mA m–2 (for cell potential at –200 mV). The changes inK M indicate that hydrogen bonding may be involved in the binding interaction.V m varies with external pH in a way which suggests that an ionizable group on the transport protein with pKa5.8 directly affects the transport rate.K M is independent of external pH over the range 4.5 to 10.5  相似文献   
2.
Chemical transformations, like osmotic translocations, are transport processes when looked at in detail. In chemiosmotic systems, the pathways of specific ligand conduction are spatially orientated through osmoenzymes and porters in which the actions of chemical group, electron and solute transfer occur as vectorial (or higher tensorial order) diffusion processes down gradients of total potential energy that represent real spatially-directed fields of force. Thus, it has been possible to describe classical bag-of-enzymes biochemistry as well as membrane biochemistry in terms of transport. But it would not have been possible to explain biological transport in terms of classical transformational biochemistry or chemistry. The recognition of this conceptual asymmetry in favour of transport has seemed to be upsetting to some biochemists and chemists; and they have resisted the shift towards thinking primarily in terms of the vectorial forces and co-linear displacements of ligands in place of their much less informative scalar products that correspond to the conventional scalar energies. Nevertheless, considerable progress has been made in establishing vectorial metabolism and osmochemistry as acceptable biochemical disciplines embracing transport and metabolism, and bioenergetics has been fundamentally transformed as a result.  相似文献   
3.
4.
Chemical transformations, like osmotic translocations, are transport processes when looked at in detail. In chemiosmotic systems, the pathways of specific ligand conduction are spatially orientated through osmoenzymes and porters in which the actions of chemical group, electron and solute transfer occur as vectorial (or higher tensorial order) diffusion processes down gradients of total potential energy that represent real spatially directed fields of force. Thus, it has been possible to describe classical bag-of-enzymes biochemistry as well as membrane biochemistry in terms of transport. But it would not have been possible to explain biological transport in terms of classical transformational biochemistry or chemistry. The recognition of this conceptual asymmetry in favour of transport has seemed to be upsetting to some biochemists and chemists; and they have resisted the shift towards thinking primarily in terms of the vectorial forces and co-linear displacements of ligands in place of their much less informative scalar products that correspond to the conventional scalar energies. Nevertheless, considerable progress has been made in establishing vectorial metabolism and osmochemistry as acceptable biochemical disciplines embracing transport and metabolism, and bioenergetics has been fundamentally transformed as a result.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号