首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12篇
  免费   0篇
  国内免费   2篇
  2020年   1篇
  2017年   1篇
  2015年   1篇
  2010年   1篇
  2009年   1篇
  2008年   1篇
  2007年   1篇
  2006年   2篇
  2005年   1篇
  2004年   1篇
  2001年   1篇
  1994年   1篇
  1990年   1篇
排序方式: 共有14条查询结果,搜索用时 818 毫秒
1.
采用SRAP分子标记技术对西南地区11种乡土杨树共333份样本的遗传变异进行分析,7对引物组合共扩增出215条带,其中多态性条带158条,多态性条带百分率为73.49%,表明11种乡土杨树间存在广泛变异。AMOVA分析结果显示,种间遗传变异分量为10.84,占总变异的48.70%,遗传差异达极显著水平(P0.001)。种间的遗传相似系数变幅在0.8199~0.9607之间,平均遗传相似系数为0.8983。聚类结果表明,昌都杨和藏川杨之间的遗传差异最小,大叶杨和三脉青杨之间的遗传差异最大。本研究结果为西南地区乡土杨树基因资源的保护、开发和利用提供了一定的科学理论依据。  相似文献   
2.
We examined the relationships between xylem resistance to cavitation and 16 structural and functional traits across eight unrelated Populus deltoides×Populus nigra genotypes grown under two contrasting water regimes. The xylem water potential inducing 50% loss of hydraulic conductance (Ψ50) varied from ?1.60 to ?2.40 MPa. Drought‐acclimated trees displayed a safer xylem, although the extent of the response was largely genotype dependant, with Ψ50 being decreased by as far as 0.60 MPa. At the tissue level, there was no clear relationship between xylem safety and either xylem water transport efficiency or xylem biomechanics; the only structural trait to be strongly associated with Ψ50 was the double vessel wall thickness, genotypes exhibiting a thicker double wall being more resistant. At the leaf level, increased cavitation resistance was associated with decreased stomatal conductance, while no relationship could be identified with traits associated with carbon uptake or bulk leaf carbon isotope discrimination, a surrogate of intrinsic water‐use efficiency. At the whole‐plant level, increased safety was associated with higher shoot growth potential under well‐irrigated regime only. We conclude that common trade‐offs between xylem resistance to cavitation and other physiological traits that are observed across species may not necessarily hold true at narrower scales.  相似文献   
3.
以乡土树种小青杨(Populus pseudo-simonii Kitag)和速生品种欧美杨107杨(Populus × euramericana cv."74/76")幼苗为试验材料,在水分胁迫条件下研究不同浓度的外源NO供体硝普纳(sodium nitroprusside, SNP)对2种杨树抗旱性的影响.结果表明,经不同浓度SNP处理后,2种杨树叶片水势对干旱胁迫的敏感程度下降,气孔导度降低,蒸腾作用减弱,叶片含水量升高,保水能力增强.同时,SNP处理能提高杨树叶片可溶性糖和可溶性蛋白含量,降低杨树叶片相对电导率,使杨树在干旱条件下的抗脱水能力提高,减轻了干旱胁迫对细胞膜的伤害.从品种间作用效果看,SNP对107杨的抗旱性提高的幅度高于小青杨,表明SNP更有利于提高速生杨的抗旱能力.  相似文献   
4.
干旱和盐胁迫是严重的非生物胁迫因子,限制植物的生长和生产力,特别是在沙漠地区。本研究采用两种沙漠杨树—胡杨(Populus euphratica)和灰杨(P. pruinosa)幼苗,比较它们对干旱、盐胁迫和两者交互胁迫的耐受性。研究了在干旱、盐胁迫和交互胁迫下,胡杨和灰杨在生长、光合能力和色素含量、非结构性碳水化合物浓度、Cl分配、渗透调节和活性氧积累等方面的物种特异性响应。研究结果表明, 与胡杨相比,灰杨在干旱、盐胁迫,特别是交互胁迫下表现出更高的生长抑制作用,光合作用下降,气孔关闭和活性氧积累,抗氧化酶活性和渗透调节能力下降。此外,在盐胁迫下,胡杨限制了盐从根部向叶片的转运,并且向粗根分配的Cl较多,向叶片分配的Cl较少,而灰杨向叶片分配较多的Cl。表明这两种杨树存在着物种特异性变化,在干旱、盐胁迫,特别是交互胁迫下,灰杨受到更大的负面作用。因此,在未来干旱和盐胁迫加重的气候环境下,在生态恢复和植树造林时,应考虑这两种杨树对干旱和盐胁迫的物种特异性响应和耐受性。  相似文献   
5.
Laccases are copper-containing glycoproteins, which are widespread in higher plants as multigene families. To gain more insight in the function of laccases in plants, especially potential role in lignification, we produced transgenic poplar plants overexpressing a cotton laccase cDNA (GaLAC1) under the control of the cauliflower mosaic virus 35S promoter. As compared with untransformed control plants, transgenic plants exhibited a 2.1- to 13.2-fold increased laccase activity, whereas plant growth rate and morphological characters remained similar to control plants. A 2.1–19.6% increase in total lignin content of the stem was found in transgenic plants. Moreover, transgenic plants showed a dramatically accelerated oxidation rate of phenolics, without obvious change in total phenolic content. Our data suggested that GaLAC1 may participate in lignin synthesis and phenolic metabolism in plants. The present work provided a new genetic evidence for the involvement of plant laccases in lignification.  相似文献   
6.
7.
Anthers of Populus maximowiczii with microspores at the mononucleate stage were cultured at 20°C in the dark on agar-solidified Murashige and Skoog medium after 4 days of cold treatment (4°C). After 4 to 8 weeks anthers on medium supplemented with 0.5, 1.0 or 2.0 mg l-1 2,4-D in combination with 0.1 mg l-1 kinetin developed calli that were characterized by smooth surface and gel-like consistency. These calli were comprised of expanding microspores surrounded by a mucilaginous matrix. After transfer of anthers with embryogenic calli to MS medium with low hormone levels (NAA at 0, 0.1 and 0.1 mg l-1 and BA at 0, 0.1 and 1.0 mg l-1) microspores started to divide and initiated independent meristematic nests, which developed into embryoidal structures, resembling globular to bi-polar heart-shaped embryoids. The embryoids germinated precociously without developing cotyledons. After transfer to medium with a range of levels of BA (1.0, 2.5 and 5.0 mg l-1), adventitious shoots developed mainly from the roots. Shoots were rooted in half strength MS medium supplemented with 0.025 mg l-1 NAA. Via this pathway anther response in the best treatment combination was 10%.Abbreviations BA benzyladenine - MS Murashige & Skoog - NAA naphthaleneacetic acid - 2,4-D-2,4 dichlorophenoxyacetic acid  相似文献   
8.
转基因杨树对杨小舟蛾体内三种保护酶活力的影响   总被引:7,自引:0,他引:7  
用转Bt单基因(FB56)和转BtCpTI双价基因(D18)杨树叶片饲喂杨小舟蛾Micromelalopha troglodyta (Graeser),采用酶活力测定方法研究了转基因杨树对幼虫中肠和血淋巴三种保护酶(SOD、CAT 和POD)活力的影响。结果表明,幼虫中肠SOD活力显著升高,而CAT和POD活力受到了显著抑制。用FB56处理24 h,杨小舟蛾幼虫中肠SOD活力增加了41.7%,与对照有显著差异;而用D18处理,SOD活力增加了25.3%,与对照差异不显著。用FB56处理24 h,中肠CAT活力受到显著抑制,36 h后抑制能力不强;而用D18处理,CAT活力全程受到显著抑制。用FB56和D18处理36 h,中肠POD活力均受到显著抑制,分别比对照下降70.1%和898%。转基因杨树通过扰乱幼虫中肠SOD、CAT和POD三种保护酶的动态平衡,使虫体内自由基清除遇到了障碍,从而对其产生了毒害作用。转双价基因杨树对幼虫中肠保护酶的毒害作用大于转单基因杨树。用2种转基因杨树叶片饲喂杨小舟蛾幼虫后其血淋巴SOD和POD活力均没有受到显著影响,但CAT活力均显著高于对照,转基因杨树对血淋巴保护酶系统的影响小于对中肠保护酶系统的影响。  相似文献   
9.
We examined the relationships among productivity, water use efficiency (WUE) and drought tolerance in 29 genotypes of Populus x euramericana (Populus deltoides x Populus nigra), and investigated whether some leaf traits could be used as predictors for productivity, WUE and drought tolerance. At Orléans, France, drought was induced on one field plot by withholding water, while a second plot remained irrigated and was used as a control. Recorded variables included stem traits (e.g. biomass) and leaf structural (e.g. leaf area) and functional traits [e.g. intrinsic water use efficiency (Wi) and carbon isotope discrimination (Delta)]. Productivity and Delta displayed large genotypic variability and were not correlated. Delta scaled negatively with Wi and positively with stomatal conductance under moderate drought, suggesting that the diversity for Delta was mainly driven by stomatal conductance. Most of the productive genotypes displayed a low level of drought tolerance (i.e. a large reduction of biomass), while the less productive genotypes presented a large range of drought tolerance. The ability to increase WUE in response to water deficit was necessary but not sufficient to explain the genotypic diversity of drought tolerance.  相似文献   
10.
We took advantage of the distinctive system‐level measurement capabilities of the Biosphere 2 Laboratory (B2L) to examine the effects of prolonged exposure to elevated [CO2] on carbon flux dynamics, above‐ and belowground biomass changes, and soil carbon and nutrient capital in plantation forest stands over 4 years. Annually coppiced stands of eastern cottonwoods (Populus deltoides) were grown under ambient (400 ppm) and two levels of elevated (800 and 1200 ppm) atmospheric [CO2] in carbon and N‐replete soils of the Intensive Forestry Mesocosm in the B2L. The large semiclosed space of B2L uniquely enabled precise CO2 exchange measurements at the near ecosystem scale. Highly controllable climatic conditions within B2L also allowed for reproducible examination of CO2 exchange under different scales in space and time. Elevated [CO2] significantly stimulated whole‐system maximum net CO2 influx by an average of 21% and 83% in years 3 and 4 of the experiment. Over the 4‐year experiment, cumulative belowground, foliar, and total aboveground biomass increased in both elevated [CO2] treatments. After 2 years of growth at elevated [CO2], early season stand respiration was decoupled from CO2 influx aboveground, presumably because of accelerated fine root production from stored carbohydrates in the coppiced system prior to canopy development and to the increased soil carbohydrate status under elevated [CO2] treatments. Soil respiration was stimulated by elevated [CO2] whether measured at the system level in the undisturbed soil block, by soil collars in situ, or by substrate‐induced respiration in vitro. Elevated [CO2] accelerated depletion of soil nutrients, phosphorus, calcium and potassium, after 3 years of growth, litter removal, and coppicing, especially in the upper soil profile, although total N showed no change. Enhancement of above‐ and belowground biomass production by elevated [CO2] accelerated carbon cycling through the coppiced system and did not sequester additional carbon in the soil.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号