首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   116篇
  免费   4篇
  国内免费   2篇
  2023年   2篇
  2022年   2篇
  2021年   2篇
  2020年   7篇
  2019年   5篇
  2018年   3篇
  2017年   2篇
  2016年   1篇
  2014年   6篇
  2013年   11篇
  2011年   1篇
  2010年   1篇
  2009年   1篇
  2008年   1篇
  2007年   6篇
  2006年   5篇
  2005年   2篇
  2004年   5篇
  2003年   3篇
  2002年   2篇
  2001年   4篇
  2000年   4篇
  1999年   4篇
  1998年   4篇
  1997年   5篇
  1996年   6篇
  1995年   5篇
  1994年   5篇
  1993年   2篇
  1992年   1篇
  1991年   2篇
  1989年   3篇
  1987年   3篇
  1986年   3篇
  1984年   1篇
  1977年   1篇
  1972年   1篇
排序方式: 共有122条查询结果,搜索用时 31 毫秒
1.
Summary The nuclei of plant cells harbor genes for two types of glyceraldehyde-3-phosphate dehydrogenases (GAPDH) displaying a sequence divergence corresponding to the prokaryote/eukaryote separation. This strongly supports the endosymbiotic theory of chloroplast evolution and in particular the gene transfer hypothesis suggesting that the gene for the chloroplast enzyme, initially located in the genome of the endosymbiotic chloroplast progenitor, was transferred during the course of evolution into the nuclear genome of the endosymbiotic host. Codon usage in the gene for chloroplast GAPDH of maize is radically different from that employed by present-day chloroplasts and from that of the cytosolic (glycolytic) enzyme from the same cell. This reveals the presence of subcellular selective pressures which appear to be involved in the optimization of gene expression in the economically important graminaceous monocots.  相似文献   
2.
3.
Three cDNA clones (GmHSP23.9, GmHSP22.3, and GmHSP22.5) representing three different members of the low-molecular-weight (LMW) heat shock protein (HSP) gene superfamily were isolated and characterized. A fourth cDNA clone, pFS2033, was partially characterized previously as a full-length genomic clone GmHSP22.0. The deduced amino acid sequences of all four cDNA clones have the conserved carboxyl-terminal LMW HSP domain. Sequence and hydropathy analyses of GmHSP22, GmHSP22.3, and GmHSP22.5, representing HSPs in the 20 to 24 kDa range, indicate they contain amino-terminal signal peptides. The mRNAs from GmHSP22, GmHSP22.3, and GmHSP22.5 were preferentially associated in vivo with endoplasmic reticulum (ER)-bound polysomes. GmHSP22 and GmHSP22.5 encode strikingly similar proteins; they are 78% identical and 90% conserved at the amino acid sequence level, and both possess the C-terminal tetrapeptide KQEL which is similar to the consensus ER retention motif KDEL; the encoded polypeptides can be clearly resolved from each other by two-dimensional gel analysis of their hybrid-arrest translation products. GmHSP22.3 is less closely related to GmHSP22 (48% identical and 70% conserved) and GmHSP22.5 (47% identical and 65% conserved). The fourth cDNA clone, GmHSP23.9, encodes a HSP of ca. 24kDa with an amino terminus that has characteristics of some mitochondrial transit sequences, and in contrast to GmHSP22, GmHSP22.3, and GmHSP22.5, the corresponding mRNA is preferentially associated in vivo with free polysomes. It is proposed that the LMW HSP gene superfamily be expanded to at least six classes to include a mitochondrial class and an additional endomembrane class of LMW HSPs.  相似文献   
4.
5.
In this study, genome‐wide association study (GWAS) results of porcine F2 crosses were used to map QTL in outcross Piétrain populations. For this purpose, two F2 crosses (Piétrain × Meishan, = 304; Piétrain × Wild Boar, = 291) were genotyped with the PorcineSNP60v2 BeadChip and phenotyped for the dressing yield, carcass length, daily gain and drip loss traits. GWASs were conducted in the pooled F2 cross applying single marker mixed linear models. For the investigated traits, between two and five (in total 15) QTL core regions, spanning 250 segregating SNPs around a significant trait‐associated peak SNP, were identified. The SNPs within the QTL core regions were subsequently tested for trait association in two outcross Piétrain populations consisting of 771 progeny‐tested boars and 210 sows with their own performance records. In the sow (boar) dataset, five (eight) of the 15 mapped QTL were validated. Hence, many QTL mapped in the F2 crosses (with Piétrain as a common founder breed) are still segregating in the current Piétrain breed. This confirms the usefulness of existing F2 crosses for mapping QTL that are still segregating in the recent founder breed generation. The approach utilizes the high power of an F2 cross to map QTL in a breeding population for which it is not guaranteed that they would be found using a GWAS in this population.  相似文献   
6.
Eukaryotic ribosome assembly requires over 200 assembly factors that facilitate rRNA folding, ribosomal protein binding, and pre-rRNA processing. One such factor is Rlp7, an essential RNA binding protein required for consecutive pre-rRNA processing steps for assembly of yeast 60S ribosomal subunits: exonucleolytic processing of 27SA3 pre-rRNA to generate the 5′ end of 5.8S rRNA and endonucleolytic cleavage of the 27SB pre-rRNA to initiate removal of internal transcribed spacer 2 (ITS2). To better understand the functions of Rlp7 in 27S pre-rRNA processing steps, we identified where it crosslinks to pre-rRNA. We found that Rlp7 binds at the junction of ITS2 and the ITS2-proximal stem, between the 3′ end of 5.8S rRNA and the 5′ end of 25S rRNA. Consistent with Rlp7 binding to this neighborhood during assembly, two-hybrid and affinity copurification assays showed that Rlp7 interacts with other assembly factors that bind to or near ITS2 and the proximal stem. We used in vivo RNA structure probing to demonstrate that the proximal stem forms prior to Rlp7 binding and that Rlp7 binding induces RNA conformational changes in ITS2 that may chaperone rRNA folding and regulate 27S pre-rRNA processing. Our findings contradict the hypothesis that Rlp7 functions as a placeholder for ribosomal protein L7, from which Rlp7 is thought to have evolved in yeast. The binding site of Rlp7 is within eukaryotic-specific RNA elements, which are not found in bacteria. Thus, we propose that Rlp7 coevolved with these RNA elements to facilitate eukaryotic-specific functions in ribosome assembly and pre-rRNA processing.  相似文献   
7.
Gene–environment interactions have been extensively studied in lung cancer. It is likely that several genetic polymorphisms cooperate in increasing the individual risk. Therefore, the study of gene–gene interactions might be important to identify high-susceptibility subgroups. GSEC is an initiative aimed at collecting available data sets on metabolic polymorphisms and the risks of cancer at several sites and performing pooled analyses of the original data. Authors of published papers have provided original data sets. The present paper refers to gene–gene interactions in lung cancer and considers three polymorphisms in three metabolic genes: CYP1A1, GSTM1 and GSTT1. The present analyses compare the gene–gene interactions of the CYP1A1*2A, GSTM1 and GSTT1 polymorphisms from studies on lung cancer conducted in Europe and the USA between 1991 and 2000. Only Caucasians have been included. The data set includes 1466 cases and 1488 controls. The only clear-cut association was found with CYP1A1*2A. This association remained unchanged after stratification by polymorphisms in other genes (with an odds ratio [OR] of approximately 2.5), except when interaction with GSTM1 was considered. When the OR for CYP1A1*2A was stratified according to the GSTM1 genotype, the OR was increased only among the subjects who had the null (homozygous deletion) GSTM1 genotype (OR=2.8, 95% CI=0.9–8.4). The odds ratio for the interactive term (CYP1A1*2A by GSTM1) in logistic regression was 2.7 (95% CI=0.5–15.3). An association between lung cancer and the homozygous CYP1A1*2A genotype is confirmed. An apparent and biologically plausible interaction is suggested between this genotype and GSTM1.  相似文献   
8.
Feed efficiency (FE) is one of the most economically and environmentally relevant traits in the animal production sector. The objective of this study was to gain knowledge about the genetic control of FE in rabbits. To this end, GWASs were conducted for individual growth under two feeding regimes (full feeding and restricted) and FE traits collected from cage groups, using 114 604 autosome SNPs segregating in 438 rabbits. Two different models were implemented: (1) an animal model with a linear regression on each SNP allele for growth trait; and (2) a two-trait animal model, jointly fitting the performance trait and each SNP allele content, for FE traits. This last modeling strategy is a new tool applied to GWAS and allows information to be considered from non-genotyped individuals whose contribution is relevant in the group average traits. A total of 189 SNPs in 17 chromosomal regions were declared to be significantly associated with any of the five analyzed traits at a chromosome-wide level. In 12 of these regions, 20 candidate genes were proposed to explain the variation of the analyzed traits, including genes such as FTO, NDUFAF6 and CEBPA previously associated with growth and FE traits in monogastric species. Candidate genes associated with behavioral patterns were also identified. Overall, our results can be considered as the foundation for future functional research to unravel the actual causal mutations regulating growth and FE in rabbits.  相似文献   
9.
Natural genetic variation is essential for the adaptation of organisms to their local environment and to changing environmental conditions. Here, we examine genomewide patterns of nucleotide variation in natural populations of the outcrossing herb Arabidopsis halleri and associations with climatic variation among populations in the Alps. Using a pooled population sequencing (Pool‐Seq) approach, we discovered more than two million SNPs in five natural populations and identified highly differentiated genomic regions and SNPs using FST‐based analyses. We tested only the most strongly differentiated SNPs for associations with a nonredundant set of environmental factors using partial Mantel tests to identify topo‐climatic factors that may underlie the observed footprints of selection. Possible functions of genes showing signatures of selection were identified by Gene Ontology analysis. We found 175 genes to be highly associated with one or more of the five tested topo‐climatic factors. Of these, 23.4% had unknown functions. Genetic variation in four candidate genes was strongly associated with site water balance and solar radiation, and functional annotations were congruent with these environmental factors. Our results provide a genomewide perspective on the distribution of adaptive genetic variation in natural plant populations from a highly diverse and heterogeneous alpine environment.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号