首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   369篇
  免费   32篇
  国内免费   34篇
  2023年   8篇
  2022年   5篇
  2021年   16篇
  2020年   17篇
  2019年   21篇
  2018年   11篇
  2017年   17篇
  2016年   15篇
  2015年   15篇
  2014年   22篇
  2013年   43篇
  2012年   11篇
  2011年   13篇
  2010年   13篇
  2009年   9篇
  2008年   17篇
  2007年   18篇
  2006年   22篇
  2005年   23篇
  2004年   18篇
  2003年   17篇
  2002年   12篇
  2001年   9篇
  2000年   7篇
  1999年   8篇
  1998年   4篇
  1997年   7篇
  1996年   6篇
  1995年   3篇
  1994年   1篇
  1993年   1篇
  1992年   5篇
  1991年   3篇
  1990年   2篇
  1989年   3篇
  1988年   3篇
  1987年   1篇
  1985年   1篇
  1984年   2篇
  1983年   1篇
  1982年   2篇
  1981年   1篇
  1980年   1篇
  1973年   1篇
排序方式: 共有435条查询结果,搜索用时 15 毫秒
1.
2.
In this work, hydrogels based on semi-interpenetrating polymeric networks (semi-IPN) based on collagen-polyurethane-alginate were studied physicochemically and from different approaches for biomedical application. It was determined that the matrices in the hydrogel state are crosslinked by the formation of urea and amide bonds between the biopolymer chains and the polyurethane crosslinker. The increment in alginate content (0–40 wt%) significantly increases the swelling capacity, generating semi-crystalline granular structures with improved storage modulus and resistance to thermal, hydrolytic, and proteolytic degradation. The in vitro bioactivity results indicated that the composition of these novel hydrogels stimulates the metabolic activity of monocytes and fibroblasts, benefiting their proliferation; while in cancer cell lines, it was determined that the composition of these biomaterials decreases the metabolic activity of breast cancer cells after 48 h of stimulation, and for colon cancer cells their metabolic activity decreases after 72 h of contact for the hydrogel with 40 wt% alginate. The matrices show a behavior of multidose release of ketorolac, and a higher concentration of analgesic is released in the semi-IPN matrix. The inhibition capacity of Escherichia coli is higher if the polysaccharide concentration is low (10 wt%). The in vitro wound closure test (scratch test) results indicate that the hydrogel with 20 wt% alginate shows an improvement in wound closure at 15 days of contact. Finally, the bioactivity of mineralization was evaluated to demonstrate that these hydrogels can induce the formation of carbonated apatite on their surface. The engineered hydrogels show biomedical multifunctionality and they could be applied in soft and hard tissue healing strategies, anticancer therapies, and drug release devices.  相似文献   
3.
Development of suitable antimicrobial biomaterials for hygienic wound dressing and healing is an important requirement for medical application. Durable mechanical properties increase the application range of biomaterial in different environmental and biological conditions. Due to the inherent brittleness of silk fibroin (SF), polyurethane fiber (PUF) was used to modify SF containing actinomycin X2 (Ac.X2) to prepare silk fibroin@actinomycin X2/polyurethane fiber (ASF/PUF) blend membranes. The ASF/PUF blend membrane was developed by solution casting method. Incorporation of PUF improved the flexibility of material and introduction of Ac.X2 has increased antibacterial activity of materials. Excellent mechanical properties (tensile strength up to 25.7 MPa and elongation at break up to 946.5 %) of 50 % SF+50 % PUF blend membrane were proved by tensile testing machine. FT-IR spectra, TGA, contact angle and DMA were tested to prove the blend membrane's physico-chemical characteristics. ASF/PUF blend membrane displayed satisfactory antibacterial activity against S. aureus, and the cytotoxicity tests showed that the blend membrane has better biosafety compared to directly applied Ac.X2 in soluble form. These results suggest that the modification of SF through PUF for development of flexible antibacterial membranes has great potential application value in the field of silk-like material fabrication.  相似文献   
4.
Conidia ofPenicillium variabile P16 were immobilized in polyurethane sponge and used in repeated-batch processes in a fluidized-bed reactor. Optimal conditions for production of glucose oxidase and catalase were: inoculum size, 10%; glucose concentration, 80 g L–1; Ca-carbonate concentration, 15 g L–1; temperature, 28°C and aeration rate, 4 VV–1 min–1. In an extended repeated-batch process, glucose oxidase activity was highest after the fourth batch and catalase activity was highest after the fifth batch. Scanning electron microscopy showed that the fungus grew only in the interior of carrier particles.  相似文献   
5.
Most green gemmules of Spongilla lacustris survived enclosure in ice at –20 °C for up to 30 days; however, their rate of germination at 20 °C was less rapid than that of control gemmules. The length of time spent at low temperature had little effect on gemmule survival. In contrast, repeated cooling to –20 °C and warming to 4 °C led to a progressive decline in gemmule viability. These results indicate that cold injury occurs primarily during transitions between high and low temperatures.  相似文献   
6.
The micropore structure is prerequisite for fast and durable endothelialization of artificial small diameter blood vessels (ASDBVs). Although some methods, such as salt leaching, coagulation, and electrospinning, have been developed to construct micropores for ASDBVs, the uncontrollability of the structure and the complicated procedures of the process are still the issues to be concerned about. In this study, a compact device based on the principle of centrifugal force is established and used to prepare polyurethane (PU) ASDBVs with micropore structures by blasting different porogens. It is found that the glass beads could construct micropores with regular round shape, uniform distribution, and controllable size (60–350 µm), which significantly improves the endothelialization of PU‐based ASDBVs, especially when the pore size is about 60 µm. This method is easy‐accessible and wide‐applicable, which provides a new pathway for the research and development of ASDBVs.  相似文献   
7.
During evolution, sponges (Porifera) have honed the genetic toolbox and biosynthetic mechanisms for the fabrication of siliceous skeletal components (spicules). Spicules carry a protein scaffold embedded within biogenic silica (biosilica) and feature an amazing range of optical, structural, and mechanical properties. Thus, it is tempting to explore the low-energy synthetic pathways of spiculogenesis for the fabrication of innovative hybrid materials. In this synthetic biology approach, the uptake of multifunctional nonbiogenic nanoparticles (fluorescent, superparamagnetic) by spicule-forming cells of bioreactor-cultivated sponge primmorphs provides access to spiculogenesis. The ingested nanoparticles were detected within intracellular vesicles resembling silicasomes (silica-rich cellular compartments) and as cytosolic clusters where they lent primmorphs fluorescent/magnetic properties. During spiculogenesis, the nanoparticles initially formed an incomplete layer around juvenile, intracellular spicules. In the mature, extracellular spicules the nanoparticles were densely arranged as a surface layer that rendered the resulting composite fluorescent and magnetic. By branching off the conventional route of solid-state materials synthesis under harsh conditions, a new pathway has been opened to a versatile platform that allows adding functionalities to growing spicules as templates in living cells, using nonbiogenic nanoscale building blocks with multiple functionalities. The magnet-assisted alignment renders this composite with its fluorescent/magnetic properties potentially suitable for application in biooptoelectronics and microelectronics (e.g., microscale on-chip waveguides for applications of optical detection and sensing).  相似文献   
8.
The first instar larva of the net-winged midge, Nothohoraia micrognathia Craig, 1969 (Diptera: Blephariceridae) is described. Instead of the primitive ring of eversible hooklets the pseudopods possess stiff apical setae. This character expression suggests that Nothohoraia is more closely related to the advanced Apistomyiini occurring outside New Zealand than to the two other New Zealand genera, Neocurupira and Peritheates.  相似文献   
9.
10.
Out of some 750 strains of microorganisms, a potent bacterium for lipase production was isolated from soil and was identified as Chromobacterium viscosum.

The bacterium accumulates lipase in culture fluid when grown aerobically at 26°C for 3 days in a medium composed of soluble starch, soy bean meal, lard and inorganic salts.

Chromobacterium lipase had an optimum pH of 7.0 for activity at 37°C, and an optimal temperature of 65°C at pH 7.0. The enzyme retained 80% of the activity when heated for 10 min at 70°C. This lipase was capable of hydrolyzing a variety of natural fats and oils, and it was more active on lard and butter than on olive oil. The activity was stimulated by Ca2+, Mg2+, Mn2+ and inhibited by Cu2+, Hg2+ and Sn2+. It was not diminished but rather stimulated by a high concentration of bile-salts.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号