首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   23篇
  免费   1篇
  2023年   4篇
  2022年   1篇
  2021年   2篇
  2020年   1篇
  2018年   2篇
  2016年   1篇
  2014年   3篇
  2013年   1篇
  2011年   2篇
  2010年   4篇
  2007年   1篇
  2006年   1篇
  2004年   1篇
排序方式: 共有24条查询结果,搜索用时 835 毫秒
1.
Ubc13 is required for Lys63-linked polyubiquitination and innate immune responses in mammals, but its functions in plant immunity still remain largely unknown. Here, we used molecular biological, pathological, biochemical, and genetic approaches to evaluate the roles of rice OsUbc13 in response to pathogens. The OsUbc13-RNA interference (RNAi) lines with lesion mimic phenotypes displayed a significant increase in the accumulation of flg22- and chitin-induced reactive oxygen species, and in defence-related genes expression or hormones as well as resistance to Magnaporthe oryzae and Xanthomonas oryzae pv oryzae. Strikingly, OsUbc13 directly interacts with OsSnRK1a, which is the α catalytic subunit of SnRK1 (sucrose non-fermenting-1-related protein kinase-1) and acts as a positive regulator of broad-spectrum disease resistance in rice. In the OsUbc13-RNAi plants, although the protein level of OsSnRK1a did not change, its activity and ABA sensitivity were obviously enhanced, and the K63-linked polyubiquitination was weaker than that of wild-type Dongjin (DJ). Overexpression of the deubiquitinase-encoding gene OsOTUB1.1 produced similar effects with inhibition of OsUbc13 in affecting immunity responses, M. oryzae resistance, OsSnRK1a ubiquitination, and OsSnRK1a activity. Furthermore, re-interfering with OsSnRK1a in one OsUbc13-RNAi line (Ri-3) partially restored its M. oryzae resistance to a level between those of Ri-3 and DJ. Our data demonstrate OsUbc13 negatively regulates immunity against pathogens by enhancing the activity of OsSnRK1a.  相似文献   
2.
3.
Modification of proteins by post-translational covalent attachment of a single, or chain, of ubiquitin molecules serves as a signaling mechanism for a number of regulatory functions in eukaryotic cells. For example, proteins tagged with lysine-63 linked polyubiquitin chains are involved in error-free DNA repair. The catalysis of lysine-63 linked polyubiquitin chains involves the sequential activity of three enzymes (E1, E2, and E3) that ultimately transfer a ubiquitin thiolester intermediate to a protein target. The E2 responsible for catalysis of lysine-63 linked polyubiquitination is a protein heterodimer consisting of a canonical E2 known as Ubc13, and an E2-like protein, or ubiquitin conjugating enzyme variant (UEV), known as Mms2. We have determined the solution structure of the complex formed by human Mms2 and ubiquitin using high resolution, solution state nuclear magnetic resonance (NMR) spectroscopy. The structure of the Mms2–Ub complex provides important insights into the molecular basis underlying the catalysis of lysine-63 linked polyubiquitin chains.  相似文献   
4.
WASH (Wiskott-Aldrich syndrome protein (WASP) and SCAR homolog) was identified to function in endosomal sorting via Arp2/3 activation. We previously demonstrated that WASH is a new interactor of BECN1 and present in the BECN1-PIK3C3 complex with AMBRA1. The AMBRA1-DDB1-CUL4A complex is an E3 ligase for K63-linked ubiquitination of BECN1, which is required for starvation-induced autophagy. WASH suppresses autophagy by inhibition of BECN1 ubiquitination. However, how AMBRA1 is regulated during autophagy remains elusive. Here, we found that RNF2 associates with AMBRA1 to act as an E3 ligase to ubiquitinate AMBRA1 via K48 linkage. RNF2 mediates ubiquitination of AMBRA1 at lysine 45. Notably, RNF2 deficiency enhances autophagy induction. Upon autophagy induction, RNF2 potentiates AMBRA1 degradation with the help of WASH. WASH deficiency impairs the association of RNF2 with AMBRA1 to impede AMBRA1 degradation. Our findings reveal another novel layer of regulation of autophagy through WASH recruitment of RNF2 for AMBRA1 degradation leading to downregulation of autophagy.  相似文献   
5.
Valosin‐containing protein (VCP)/p97/Cdc48 is one of the best‐characterised type II cytosolic AAA+ ATPases most known for their role in ubiquitin‐dependent protein quality control. Here, we provide functional insights into the role of the Leishmania VCP/p97 homologue (LiVCP) in the parasite intracellular development. We demonstrate that although LiVCP is an essential gene, Leishmania infantum promastigotes can grow with less VCP. In contrast, growth of axenic and intracellular amastigotes is dramatically affected upon decreased LiVCP levels in heterozygous and temperature sensitive (ts) LiVCP mutants or the expression of dominant negative mutants known to specifically target the second conserved VCP ATPase domain, a major contributor of the VCP overall ATPase activity. Interestingly, these VCP mutants are also unable to survive heat stress, and a ts VCP mutant is defective in amastigote growth. Consistent with LiVCP's essential function in amastigotes, LiVCP messenger ribonucleic acid undergoes 3'Untranslated Region (UTR)‐mediated developmental regulation, resulting in higher VCP expression in amastigotes. Furthermore, we show that parasite mutant lines expressing lower VCP levels or dominant negative VCP forms exhibit high accumulation of polyubiquitinated proteins and increased sensitivity to proteotoxic stress, supporting the ubiquitin‐selective chaperone function of LiVCP. Together, these results emphasise the crucial role LiVCP plays under heat stress and during the parasite intracellular development.  相似文献   
6.
7.
Z-DNA-binding protein 1 (ZBP1) is an innate sensor of influenza A virus (IAV) that participates in IAV-induced programmed cell death. Nevertheless, little is known about the upstream signaling pathways regulating ZBP1. We found that a member of the tripartite motif (TRIM) family, TRIM34, interacted with ZBP1 to promote its K63-linked polyubiquitination. Using a series of genetic approaches, we provide in vitro and in vivo evidence indicating that IAV triggered cell death and inflammatory responses via dependent on TRIM34/ZBP1 interaction. TRIM34 and ZBP1 expression and interaction protected mice from death during IAV infection owing to reduced inflammatory responses and epithelial damage. Additionally, analysis of clinical samples revealed that TRIM34 associates with ZBP1 and mediates ZBP1 polyubiquitination in vivo. Higher levels of proinflammatory cytokines correlated with higher levels of ZBP1 in IAV-infected patients. Taken together, we conclude that TRIM34 serves as a critical regulator of IAV-induced programmed cell death by mediating the K63-linked polyubiquitination of ZBP1.  相似文献   
8.
9.
The phosphatase and tensin homolog deleted on chromosome 10 (PTEN) protein is a key player in tumorigenesis of non–small cell lung cancer (NSCLC) and was recently found to be inactivated by tripartite motif containing 25 (TRIM25)–mediated K63-linked polyubiquitination. However, the deubiquitinase (Dub) coordinate TRIM25 in PTEN ubiquitination is still elusive. In the present study, we found that this K63-linked polyubiquitination could be ablated by the ubiquitin-specific protease 10 (USP10) in a screen against a panel of Dubs. We found using coimmununoprecipitation/immunoblotting that USP10 interacted with PTEN and reduced the K63-linked polyubiquitination of PTEN mediated by TRIM25 in NSCLC cells. Moreover, USP10, but not its inactive C424A deubiquitinating mutant or other Dubs, abolished PTEN from K63-linked polyubiquitination mediated by TRIM25. In contrast to TRIM25, USP10 restored PTEN phosphatase activity and reduced the production of the secondary messenger phosphatidylinositol-3,4,5-trisphosphate, thereby inhibiting AKT/mammalian target of rapamycin progrowth signaling transduction in NSCLC cells. Moreover, USP10 was downregulated in NSCLC cell lines and primary tissues, whereas TRIM25 was upregulated. Consistent with its molecular activity, re-expression of USP10 suppressed NSCLC cell proliferation and migration, whereas knockout of USP10 promoted NSCLC cell proliferation and migration. In conclusion, the present study demonstrates that USP10 coordinates TRIM25 to modulate PTEN activity. Specifically, USP10 activates PTEN by preventing its K63-linked polyubiquitination mediated by TRIM25 and suppresses the AKT/mammalian target of rapamycin signaling pathway, thereby inhibiting NSCLC proliferation, indicating that it may be a potential drug target for cancer treatment.  相似文献   
10.
In response to replication-blocking lesions, proliferating cell nuclear antigen (PCNA) can be sequentially ubiquitinated at the K164 residue leading to 2 modes of DNA-damage tolerance, namely translesion DNA synthesis (TLS) and error-free lesion bypass. Ectopic expression of PCNA fused with ubiquitin (Ub) lacking the 2 C-terminal Gly residues resembles PCNA monoubiquitination-mediated TLS. However, if the fused Ub contains C-terminal Gly residues, it is further polyubiquitinated and inhibits cell proliferation. Unexpectedly, the polyubiquitination chain does not require any surface Lys residues and is likely to be head-to-tail linked. Such PCNA polyubiquitination interferes with replication, arrests cells at the S-phase and activates the p53 checkpoint pathway. The above cell-cycle arrest is reversible in an ATR-dependent manner, as simultaneous inhibition of ATR, but not ATM, induces apoptosis. Since ectopic expression of PCNA-Ub also induces double-strand breaks that colocalize with single-stranded DNA, we infer that this non-canonical PCNA poly-Ub chain serves as a signal to activate ATR checkpoint and recruit double-strand-break repair apparatus.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号