首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1162篇
  免费   312篇
  国内免费   25篇
  2024年   7篇
  2023年   17篇
  2022年   17篇
  2021年   19篇
  2020年   103篇
  2019年   76篇
  2018年   92篇
  2017年   75篇
  2016年   71篇
  2015年   83篇
  2014年   78篇
  2013年   121篇
  2012年   52篇
  2011年   99篇
  2010年   58篇
  2009年   83篇
  2008年   49篇
  2007年   53篇
  2006年   52篇
  2005年   41篇
  2004年   35篇
  2003年   22篇
  2002年   21篇
  2001年   23篇
  2000年   18篇
  1999年   20篇
  1998年   13篇
  1997年   6篇
  1996年   1篇
  1995年   12篇
  1994年   5篇
  1993年   8篇
  1992年   9篇
  1991年   9篇
  1990年   4篇
  1989年   4篇
  1987年   3篇
  1986年   2篇
  1985年   9篇
  1984年   5篇
  1983年   9篇
  1982年   4篇
  1981年   2篇
  1980年   2篇
  1979年   2篇
  1978年   2篇
  1977年   1篇
  1976年   1篇
  1975年   1篇
排序方式: 共有1499条查询结果,搜索用时 15 毫秒
1.
The biologically important pyridoxinato(1−) ligand (anionic vitamin B6) shows the rare phenolate-hydroxymethyl chelation plus bridging mode through the pyridine-nitrogen atom towards zinc(II) to give the one-dimensional (1D) coordination polymer {(acetato-κO)-aqua-μ-[2-methyl-3-oxy-4,5-di(hydroxymethyl)pyridine-κN:O,O′]zinc(II)}·monohydrate with polar packing of adjacent chains along the polar c axis (in space group Pc) through strong inter-chain hydrogen bonding.  相似文献   
2.
Coordination polymers of HEAP-ED with La(III), Pr(III), Nd(III), Sm(III), Gd(III), Tb(III) and Dy(III) metal ions have been synthesized and characterized by elemental analyses, electronic spectra, magnetic susceptibilities, FTIR, NMR, scanning electronic microscopy (SEM) and thermogravimetric analyses. Catalytic activity of selected coordination polymers was examined for pharmaceutical important organic synthesis. Antimicrobial activity of isolated Ln(III) coordination polymers against Escherichia coli, Bacillus subtilis, Staphylococcus aureus (bacteria) and Saccharomyces cerevisiae (yeast) were measured. It was observed from the study that the Ln(III) coordination polymers acted as an efficient and effective catalysts and antimicrobial agents.  相似文献   
3.
The use of entomopathogenic nematodes on cabbage leaves against larvae of the diamondback moth (DBM) Plutella xylostella requires the addition of formulation adjuvants to achieve satisfying control. Without adjuvants nematodes settle in the tank mix of backpack sprayers causing uneven distribution. The polymers arabic and guar gum, alginate and xanthan were used in concentrations between 0.05 and 0.3% to retard sedimentation of Steinernema carpocapsae. Arabic gum had no effect, guar gum prevented sedimentation at 0.3% but the effect dropped significantly at lower concentration. At 0.05%, xanthan prevented nematode sedimentation better than alginate. Deposition of nematodes on the leaves was significantly increased by the addition of any of the polymers. Spraying nematodes on leaves with an inclination of 45° without the addition of any formulation resulted in 70% run-off. Adding 0.2% alginate or xanthan reduced the losses to <20%. The use of a surfactant–polymer formulation significantly reduced defoliation by DBM larvae. Visual examinations provided evidence that nematodes are not ingested by DBM larvae. Invasion of S. carpocapsae is an active process via the anus. The function of the formulation is not to prolong nematode survival, but to provide environmental conditions which enable rapid invasion of the nematodes. Nematode performance was improved by selection of the best surfactant in combination with xanthan and by optimisation of the concentrations of the surfactant Rimulgan® and the polymer xanthan. The best control results were achieved with Rimulgan® at 0.3% together with 0.3% xanthan, causing DBM mortality of >90% at 80% relative humidity and >70% at 60%. The formulation lowered the LC50 from 12 to 1 nematode/larva. The viscosity of the surfactant–polymer formulations correlated well with nematode efficacy, prevention of sedimentation and adherence to the leave. This physical parameter can therefore be recommended for improvement of nematode formulations to be used for foliar application against DBM.  相似文献   
4.
While haemoconcentration due to loss of plasma volume is well established during cycling, the existence of similar changes during running remains contentious. This study compared the changes in plasma volume and associated blood indices during 60 min of running and cycling at the same relative intensity (approximately 65% VO2max), with all changes referenced to blood indices obtained after 30 min seated at rest on a cycle ergometer. Plasma osmolarity increased similarly with both forms of exercise but was less than predicted for water loss alone, such that there was a net loss of sodium during exercise and of potassium postexercise, with essentially no loss of protein. Plasma volume decreased similarly (approximately 6.5%) in both exercise trials, but while that with cycling was initiated by exercise itself and was essentially maximal within 5 min, the reduction in plasma volume in the running trial was induced by adopting the upright posture and was complete before exercise began. These data would indicate that different mechanisms are responsible for the changes in plasma volume induced by running and cycling, while the similarity of change would suggest that there is a lower limit to any reduction in plasma volume, regardless of mechanism. Furthermore, the observation that the changes in plasma volume were complete before or early in exercise, would imply that oral water ingestion during prolonged exercise, which is essential for thermoregulation, may be more concerned with homeostasis of extravascular water rather than plasma volume.  相似文献   
5.
We recently showed that a side-chain industrial co-oligosiloxane presents a quenchable enlarged blue phase behaviour at the cholesteric-isotropic phase transition. In this paper, we present the results of a structural study based on X-ray diffraction, differential scanning calorimetry and optical measurements. In particular, the smectic A organisation is demonstrated in the lower temperature domain, which was hitherto understood as a cholesteric phase. A structural model for this phase is proposed on the basis of the analysis of the anisotropic scattering of stretched fibers. Our results also suggest that the observed glass transition is indeed a rather complex phenomenon, which seems to involve not only the freezing of the main chains, but also smectic correlations at the side-chain level. Moreover, the calorimetric study indicates that, notwithstanding the conservation of the processed film's optical properties, low kinetic reorganisations occur at room temperature.  相似文献   
6.
Steady state kinetics were used to examine the influence of Cd2+ both on K+ stimulation of a membrane-bound ATPase from sugar beet roots (Beta vulgaris L. cv. Monohill) and on K+(86Rb+) uptake in intact or excised beet roots. The in vitro effect of Cd2+ was studied both on a 12000–25000 g root fraction of the (Na++K++Mg2+)ATPase and on the ATPase when further purified by an aqueous polymer two-phase system. The observed data can be summarized as follows: 1) Cd2+ at high concentrations (>100 μM) inhibits the MgATPase activity in a competitive way, probably by forming a complex with ATP. 2) Cd2+ at concentrations <100 μM inhibits the specific K+ activation at both high and low affinity sites for K+. The inhibition pattern appears to be the same in the two ATPase preparations of different purity. In the presence of the substrate MgATP, and at K+ <5 mM, the inhibition by Cd2+ with respect to K+ is uncompetitive. In the presence of MgATP and K+ >10 μM, the inhibition by Cd2+ is competitive. 3) At the low concentrations of K+, Cd2+ also inhibits the 2,4-dinitrophenol(DNP)-sensitive (metabolic) K+(86Rb+) uptake uncompetitively both in excised roots and in roots of intact plants. 4) The DNP-insensitive (non metabolic) K+(86Rb+) uptake is little influenced by Cd2+. As Cd2+ inhibits the metabolic uptake of K+(86Rb+) and the K+ activation of the ATPase in the same way at low concentrations of K+, the same binding site is probably involved. Therefore, under field conditions, when the concentration of K+ is low, the presence of Cd2+ could be disadvantageous.  相似文献   
7.
Synopsis Blood samples from cannulated young adult (2.5–15 kg) white sturgeon, acclimated to San Francisco Bay water (24 ppt) had plasma values of 248.8 ± 13.5 mOsm kg−1 H2O, [Na+] = 125 ± 8.0 mEq 1−1, [K+] = 2.6 ± 0.8 mEq 1−1 and [CL] = 122 ± 3.0 mEq 1−1. Freshwater acclimated sturgeon had an osmolality of 236 ± 7, [Na+] = 131.6 + 4.4, [K+] = 2.5 ± 0.7 and [CL] = 110.6 ± 3.6. Freshwater acclimated fish gradually exposed to sea water (increase of 5 ppt h−1) had higher plasma osmolalities than did the bay water acclimated fish. These young adult sturgeon are able to tolerate transfer from fresh water to sea water as well as gradual transfer from sea water to fresh water. Plasma electrolytes in transferred fish are regulated, but tend to differ from long term acclimated fish at the same salinities. There is a gradual increase in the upper salinity tolerance (abrupt transfer) of juvenile white sturgeon with weight: 5–10 ppt for 0.4–0.9 g fish, 10–15 ppt for 0.7–1.8 g fish, and 15 ppt for 4.9–50.0 g fish. The ability of juveniles to regulate plasma osmolality is limited. The young adult fish are able to tolerate higher salinities (35 ppt) than juvenile sturgeon but probably are also characterized by low activity of the necessary ion exchange mechanisms in the gills which permit rapid adjustment of blood electrolytes with graduate change in external salinity.  相似文献   
8.
塑料的大量生产和无节制的使用已造成严重的环境污染。为了减少塑料废物对环境的影响,近年来塑料酶法降解已成为国内外研究者关注的热点。例如,通过蛋白质工程策略提高塑料降解酶催化活性和热稳定性,进一步提高酶法降解的效率。另外,通过融合酶策略将塑料结合模块与塑料降解酶融合,也可以促进塑料降解。近期发表在期刊Chem Catalysis的一项研究表明,采用碳水化合物结合模块融合策略可以在低浓度(<10 wt%)的底物聚对苯二甲酸乙二醇酯[poly(ethylene terephthalate),PET]中提高塑料降解酶的活性。但是在高浓度底物(10 wt%−20 wt%)中,该策略无法提高PET的酶法降解。该项研究对于采用塑料结合模块促进酶法降解塑料具有重要的指导意义。  相似文献   
9.
The application of cellulose-based stationary phases for chiral separations has been extended to open tubular column chromatography. Efficient columns were obtained by coating the capillaries with mixtures of chiral cellulose materials and conventional achiral stationary phases for gas chromatography. In this study, various siloxane and polyethylene glycol polymers were used as achiral components and mixed with different substituted benzoylcellulose derivatives as chiral components. Systematic investigations were carried out to determine the optimal ratio for the components of the stationary phase. Depending on the chromatographic mode—gas chromatography (GC) or supercritical fluid chromatography (SFC)—the stationary phases were found to behave differently. The applicability of the technique was demonstrated by the resolution of various racemic compounds. © 1993 Wiley-Liss, Inc.  相似文献   
10.
The power conversion efficiencies (PCEs) of all-polymer solar cells (all-PSCs) have already exceeded 17%. However, the limited absorption range of an all-polymer system results in significantly reduced short-circuit current density (Jsc), which eventually influences the PCE improvement. To broaden the light absorption of polymer acceptors, herein, benzotriazole is introduced in the core unit of small molecule acceptors and thus two narrow-bandgap polymer acceptors named PTz-BO and PTz-C11 featuring the same molecular backbone and different side-chain length are synthesized. Compared with PTz-C11, the PTz-BO based-all PSCs deliver a slightly reduced Jsc, a large open-circuit voltage (Voc) and a low voltage loss below 0.50 V. Moreover, ternary all-PSCs are constructed by introducing PTz-C11 as a guest component. Benefiting from the reduced recombination, improved exciton generation and dissociation, and balanced charge transport, a high efficiency of 16.58% is obtained for the ternary all-PSCs, with a high Jsc over 25 mA cm−2 without sacrificing the Voc. Such result represents the highest efficiency reported for benzotriazole-based all-PSCs in the literature thus far. This work demonstrates the great potential of benzotriazole for the synthesis of efficient narrow-bandgap polymer acceptors.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号