首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8篇
  免费   0篇
  8篇
  2022年   1篇
  2014年   3篇
  2013年   1篇
  2003年   1篇
  2001年   1篇
  1998年   1篇
排序方式: 共有8条查询结果,搜索用时 15 毫秒
1
1.
We present here a two-step strategy for micropatterning proteins on a substrate to control neurite growth in culture. First, conventional microcontact printing is used to prepare a micropattern of protein A, which binds the Fc fragment of immunoglobulins. Then, a chimeric protein, consisting of the extracellular domain of a guidance protein recombinantly linked to the Fc fragment of IgG (prepared using conventional molecular techniques), is applied from solution. The chimeric protein binds to the patterned protein A, taking on its geometric pattern. Using this method, we have micropatterned the extracellular domain of the cell adhesion molecule, L1 (as an L1-Fc chimera) and demonstrated that it retains its ability to selectively guide axonal growth. L1-Fc micropatterned on a background of poly-l-lysine resulted in selective growth of the axons on the micropattern, whereas the somata and dendrites were unresponsive. Substrates bearing simultaneous micropatterns of L1-Fc and poly-l-lysine on a background of untreated glass were also created. Using this approach, cell body position was controlled by manipulating the dimensions of the poly-l-lysine pattern, and the dendrites were constrained to the poly-l-lysine pattern, while the axons grew preferentially on L1-Fc. The two-step microcontact printing method allows preparation of substrates that contain guidance proteins in geometric patterns with resolution of 1 m. This method should be broadly applicable to many classes of proteins.  相似文献   
2.
The only known structural protein required for formation of myelin, produced by oligodendrocytes in the central nervous system, is myelin basic protein (MBP). This peripheral membrane protein has different developmentally-regulated isoforms, generated by alternative splicing. The isoforms are targeted to distinct subcellular locations, which is governed by the presence or absence of exon-II, although their functional expression is often less clear. Here, we investigated the role of exon-II-containing MBP isoforms and their link with cell proliferation. Live-cell imaging and FRAP analysis revealed a dynamic nucleocytoplasmic translocation of the exon-II-containing postnatal 21.5-kDa MBP isoform upon mitogenic modulation. Its nuclear export was blocked upon treatment with leptomycin B, an inhibitor of nuclear protein export. Next to the postnatal MBP isoforms, embryonic exon-II-containing MBP (e-MBP) is expressed in primary (immature) oligodendrocytes. The e-MBP isoform is exclusively present in OLN-93 cells, a rat-derived oligodendrocyte progenitor cell line, and interestingly, also in several non-CNS cell lines. As seen for postnatal MBPs, a similar nucleocytoplasmic translocation upon mitogenic modulation was observed for e-MBP. Thus, upon serum deprivation, e-MBP was excluded from the nucleus, whereas re-addition of serum re-established its nuclear localization, with a concomitant increase in proliferation. Knockdown of MBP by shRNA confirmed a role for e-MBP in OLN-93 proliferation, whereas the absence of e-MBP similarly reduced the proliferative capacity of non-CNS cell lines. Thus, exon-II-containing MBP isoforms may regulate cell proliferation via a mechanism that relies on their dynamic nuclear import and export, which is not restricted to the oligodendrocyte lineage.  相似文献   
3.
The levels of glucose transporters (GLUTs), specifically GLUT3 and GLUT1, increased dramatically in PC12 cells that were cultured on suitable adhesion substrata (poly-l-lysine [PLL]) and induced to differentiate with nerve growth factor (NGF). Closer examination of this response revealed that: (1) cellular attachment to PLL was sufficient to stimulate the increase in GLUT immunoreactivity, and (2) NGF alone was not effective unless the cells were cultured on PLL-treated surfaces. The response to PLL was detected as early as 4 hr after plating the cells and peaked within 24–48 hr. Other adhesion substrata, such as collagen and poly-l-ornithine, evoked a similar response, although the latter polymer was far less effective. The increase in GLUTs appeared to result from an accumulation of existing transporters because this response was not blocked by inhibiting protein synthesis. Cellular adhesion to PLL was also accompanied by a rapid activation of glucose metabolism. Thus, specific recognition of the adhesion substratum not only provides a context for cell attachment, but also elicits important functional changes in GLUT activity.  相似文献   
4.
The neuroprotective role of TNF receptor 2 (TNFR2) has been shown in various studies. However, a direct role of TNFR2 in oligodendrocyte function has not yet been demonstrated. Using primary oligodendrocytes of transgenic mice expressing human TNFR2, we show here that TNFR2 is primarily expressed on oligodendrocyte progenitor cells. Interestingly, preconditioning with a TNFR2 agonist protects these cells from oxidative stress, presumably by increasing the gene expression of distinct anti-apoptotic and detoxifying proteins, thereby providing a potential mechanism for the neuroprotective role of TNFR2 in oligodendrocyte progenitor cells.  相似文献   
5.
We investigated whether a model peptide for group 3 LEA (G3LEA) proteins we developed in previous studies can protect liposomes from desiccation damage. Four different peptides were compared: 1) PvLEA-22, which consists of two tandem repeats of the 11-mer motif characteristic of LEA proteins from the African sleeping chironomid; 2) a peptide with amino acid composition identical to that of PvLEA-22, but with its sequence scrambled; 3) poly-l-glutamic acid; and 4) poly-l-lysine. Peptides 1) and 2) protected liposomes composed of 1-palmitoyl 2-oleoyl-sn-glycero-3-phosphatidylcholine (POPC) against fusion caused by desiccation, as revealed by particle size distribution measurements with dynamic light scattering. Indeed, liposomes maintain their pre-stress size distribution when these peptides are added at a peptide/POPC molar ratio of more than 0.5. Interestingly, peptide 1) achieved the comparable or higher retention of a fluorescent probe inside liposomes than did several native LEA proteins published previously. In contrast, the other peptides exhibited less protective effects. These results demonstrate that the synthetic peptide derived from the G3LEA protein sequence can suppress desiccation-induced liposome fusion. Fourier transform infrared (FT-IR) spectroscopic measurements were performed for the dried mixture of each peptide and liposome. Based on results for the gel-to-liquid crystalline phase transition temperature of the liposome and the secondary structure of the peptide backbone, we discuss possible underlying mechanisms for the protection effect of the synthetic peptide on dried liposomes.  相似文献   
6.
A technique has been developed to selectively attach bacteria to solid supports using poly-l-lysine. The patterned biofilms were labeled with green fluorescent protein (GFP) or a nucleic acid stain and imaged using both confocal microscopy and GFP stereomicroscopy. E. coli DH10B, E. coli MC1061, and Pseudomonas sp. GJ1 were selectively attached to regions coated with poly-l-lysine but not to uncoated regions. In contrast, E. coli DH5, W3110 and 33456 attached indiscriminately to the coated and uncoated regions of the surface. Those organisms that selectively attached to the poly-l-lysine coated regions formed biofilms twice as thick as the organisms that attached indiscriminately to the surface. This technique can be used for selectively patterning surfaces with genetically engineered microorganisms for biosynthesis of secondary metabolites and biodegradation or for developing a bacterial-based microscale medical diagnostic tool.  相似文献   
7.
Focal adhesions (FAs) provide the cells linkages to extracellular matrix (ECM) at sites of integrins binding and transmit mechanical forces between the ECM and the actin cytoskeleton. Cells sense and respond to physical stimuli from their surrounding environment through the activation of mechanosensitive signaling pathways, a process called mechanotransduction. In this study, we used RGD-peptide conjugated DNA tension gauge tethers (TGTs) with different tension tolerance (Ttol) to determine the molecular forces required for FA maturation in different sizes and YAP nuclear translocation. We found that the limitation of FA sizes in cells seeded on TGTs with different Ttol were less than 1 μm, 2 μm, 3 μm, and 6 μm for Ttol values of 43 pN, 50 pN, 54 pN, and 56 pN, respectively. This suggests that the molecular tension across integrins increases gradually as FA size increases throughout FA maturation. For YAP nuclear translocation, significant YAP nuclear localization was observed only in the cells seeded on the TGTs with Ttol ≥ 54 pN, but not on TGTs with Ttol ≤ 50 pN, suggesting a threshold of molecular force across integrins for YAP nuclear translocation lies in the range of 50 pN–54 pN.  相似文献   
8.
The application of nanotechnology for drug targeting underlines the importance of controlling the kinetics and cellular sites of delivery for optimal therapeutic outcomes. Here we examined the effect of particle size on internalization and degradation of surface-bound fibronectin by fibroblasts using polystyrene nanoparticles (NPs; 51 nm) and microparticles (MPs; 1 μm). Fibronectin was strongly bound by NPs and MPs as assessed by immuno-dot blot analysis (5.1 ±0.4×10– 5 pg fibronectin per μm2 of NP surface; 4.2±±0.3×10–5 pg fibronectin per μm2 of MP surface; p>0.2). We estimated that ~193 fibronectin molecules bound to a MP compared with 0.6 fibronectin molecules per NP, indicating that ~40% of nanoparticles were not bound by fibronectin. One hour after incubation, fibronectin-coated NPs and MPs were rapidly internalized by Rat-2 fibroblasts. MPs and NPs were engulfed partly by receptor-mediated endocytosis as indicated by decreased uptake when incubated at 4 °C, or by depletion of ATP with sodium azide. Pulse-chase experiments showed minimal exocytosis of NPs and MPs. Internalization of NPs and MPs was inhibited by jasplakinolide, whereas internalization of MPs but not NPs was inhibited by latrunculin B and by integrin-blocking antibodies. Extraction of plasma membrane cholesterol with methyl β-cyclodextrin inhibited internalization of fibronectin-coated NPs but not MPs. Biotinylated fibronectin internalized by cells was extensively degraded on MPs but not NPs. Particle size affects actin and clathrin-dependent internalization mechanisms leading to fibronectin degradation on MPs but not NPs. Thus either prolonged, controlled release or an immediate delivery of drugs can be achieved by adjusting the particle size along with matrix proteins such as FN.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号