首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   3篇
  2017年   1篇
  2016年   2篇
  2013年   1篇
  2012年   1篇
  2010年   1篇
  2006年   1篇
排序方式: 共有7条查询结果,搜索用时 15 毫秒
1
1.
Poecilogony, a rare phenomenon in marine invertebrates, occurs when alternative larval morphs differing in dispersal potential or trophic mode are produced from a single genome. Because both poecilogony and cryptic species are prevalent among sea slugs in the suborder Sacoglossa (Gastropoda: Opisthobranchia), molecular data are needed to confirm cases of variable development and to place them in a phylogenetic context. The nominal species Alderia modesta produces long-lived, feeding larvae throughout the North Atlantic and Pacific, but in California can also produce short-lived larvae that metamorphose without feeding. We collected morphological, developmental, and molecular data for Alderia from 17 sites spanning the eastern and western Pacific and North Atlantic. Estuaries south of Bodega Harbor, California, contained a cryptic species (hereafter Alderia sp.) with variable development, sister to the strictly planktotrophic A. modesta. The smaller Alderia sp. seasonally toggled between planktotrophy and lecithotrophy, with some individuals differing in development but sharing mitochondrial DNA haplotypes. The sibling species overlapped in Tomales Bay, California, but showed no evidence of hybridization; laboratory mating trials suggest postzygotic isolation has arisen. Intra- and interspecific divergence times were estimated using a molecular clock calibrated with geminate sacoglossans. Speciation occurred about 4.1 million years ago during a major marine radiation in the eastern Pacific, when large inland embayments in California may have isolated ancestral populations. Atlantic and Pacific A. modesta diverged about 1.7 million years ago, suggesting trans-Arctic gene flow was interrupted by Pleistocene glaciation. Both Alderia species showed evidence of late Pleistocene population expansion, but the southern Alderia sp. likely experienced a more pronounced bottleneck. Reduced body size may have incurred selection against obligate planktotrophy in Alderia sp. by limiting fecundity in the face of high larval mortality rates in warm months. Alternatively, poecilogony may be an adaptive response to seasonal opening of estuaries, facilitating dispersal by long-lived larvae. An improved understanding of the forces controlling seasonal shifts in development in Alderia sp. may yield insight into the evolutionary forces promoting transitions to nonfeeding larvae.  相似文献   
2.
Population‐level consequences of dispersal ability remain poorly understood, especially for marine animals in which dispersal is typically considered a species‐level trait governed by oceanographic transport of microscopic larvae. Transitions from dispersive (planktotrophic) to nondispersive, aplanktonic larvae are predicted to reduce connectivity, genetic diversity within populations, and the spatial scale at which reproductive isolation evolves. However, larval dimorphism within a species is rare, precluding population‐level tests. We show the sea slug Costasiella ocellifera expresses both larval morphs in Florida and the Caribbean, regions with divergent mitochondrial lineages. Planktotrophy predominated at 11 sites, 10 of which formed a highly connected and genetically diverse Caribbean metapopulation. Four populations expressed mainly aplanktonic development and had markedly reduced connectivity, and lower genetic diversity at one mitochondrial and six nuclear loci. Aplanktonic dams showed partial postzygotic isolation in most interpopulation crosses, regardless of genetic or geographic distance to the sire's source, suggesting that outbreeding depression affects fragmented populations. Dams from genetically isolated and neighboring populations also exhibited premating isolation, consistent with reinforcement contingent on historical interaction. By increasing self‐recruitment and genetic drift, the loss of dispersal may thus initiate a feedback loop resulting in the evolution of reproductive isolation over small spatial scales in the sea.  相似文献   
3.
Poecilogonous species show variation in developmental mode, with larvae that differ both morphologically and ecologically. The spionid polychaete Pygospio elegans shows variation in developmental mode not only between populations, but also seasonally within populations. We investigated the consequences of this developmental polymorphism on the spatial and seasonal genetic structure of P. elegans at four sites in the Danish Isefjord‐Roskilde‐Fjord estuary at six time points, from March 2014 until February 2015. We found genetic differentiation between our sampling sites as well as seasonal differentiation at two of the sites. The seasonal genetic shift correlated with the appearance of new size cohorts in the populations. Additionally, we found that the genetic composition of reproductive individuals did not always reflect the genetic composition of the entire sample, indicating that variance in reproductive success among individuals is a likely explanation for the patterns of chaotic genetic patchiness observed during this and previous studies. The heterogeneous, unpredictable character of the estuary might maintain poecilogony in P. elegans as a bet‐hedging strategy in the Isefjord‐Roskilde‐Fjord complex in comparison with other sites where P. elegans are expected to be fixed to a certain mode of development.  相似文献   
4.
In many species, alternative developmental pathways lead to the production of two distinct phenotypes, promoting the evolution of morphological novelty and diversification. Offspring type in marine invertebrates influences transport time by ocean currents, which dictate dispersal potential and gene flow, and thus has sweeping evolutionary effects on the potential for local adaptation and on rates of speciation, extinction and molecular evolution. Here, we use the polychaete Streblospio benedicti to investigate the effects of dimorphic offspring type on gene flow and genetic structure in coastal populations. We use 84 single nucleotide polymorphism (SNP) markers for this species to assay populations on the East and West Coasts of the United States. Using these markers, we found that in their native East Coast distribution, populations of S. benedicti have high‐population genetic structure, but this structure is associated primarily with geographic separation rather than developmental differences. Interestingly, very little genetic differentiation is recovered between individuals of different development types when they occur in the same or nearby populations, further supporting that this is a true case of poecilogony. In addition, we were able to demonstrate that the recently introduced (~100 ya) West Coast populations probably originated from a lecithotrophic population near Delaware.  相似文献   
5.
Morphology is strongly correlated with trophic mode in marine invertebrate larvae. We asked if larval morphogenesis is influenced by adelphophagy, a trophic mode in which larvae are provisioned with additional yolk in the form of extra‐embryonic nurse eggs, instead of the more common increase in egg size. We used histology and scanning electron microscopy to analyze morphogenesis in Boccardia proboscidea, a polychaete that produces both small planktotrophic larvae and large adelphophagic larvae in a single egg capsule. Results indicate that both morphs are similar for histogenesis of ectodermal derivatives, and differ for the gut mucosa and coelom which show delayed differentiation in the adelphophagic morph. Heterochrony in gut and coelom development suggests that differentiation of these organ systems is decoupled from overall development, and that a trade‐off exists between maturation of these tissues and rapid growth. We also looked for potential barriers to adelphophagy in planktotrophic larvae that have nurse eggs available to them. These planktotrophic larvae appeared morphologically equipped for adelphophagy: the gut was differentiated at an early stage, and larvae had structures involved in nurse‐egg ingestion in the adelphophagic morph (e.g., oral cilia and ventral ciliated patches). Planktotrophic larvae were additionally capable of ingesting particles (Di‐I) while in the egg capsule. Lack of adelphophagy in planktotrophic larvae remains enigmatic but these results indicate that morphology alone does not account for the arrested development shown by these larvae. J. Morphol. 2013. © 2012 Wiley Periodicals, Inc.  相似文献   
6.
Abstract. The morphology of marine invertebrate larvae is strongly correlated with egg size and larval feeding mode. Planktotrophic larvae typically have suites of morphological traits that support a planktonic, feeding life style, while lecithotrophic larvae often have larger, yolkier bodies, and in some cases, a reduced expression of larval traits. Poecilogonous species provide interesting cases for the analysis of early morphogenesis, as two morphs of larvae are produced by a single species. We compared morphogenesis in planktotrophic and lecithotrophic morphs of the poecilogonous annelid Streblospio benedicti from the trochophore stage through metamorphosis, using observations of individuals that were observed alive, with scanning electron microscopy, or in serial sections. Offspring of alternate developmental morphs of this species are well known to have divergent morphologies in terms of size, yolk content, and the presence of larval bristles. We found that some phenotypic differences between morphs occur as traits that are present in only one morph (e.g., larval bristles, bacillary cells on the prostomium and pygidium), but that much of the phenotypic divergence is based on heterochronic changes in the differentiation of shared traits (e.g., gut and coelom). Tissue and organ development are compared in both morphs in terms of their structure and ontogenetic change throughout early development and metamorphosis.  相似文献   
7.
Pygospio elegans is an opportunistic, wide‐spread spionid polychaete that reproduces asexually via fragmentation and can produce benthic and pelagic larvae, hence combining different developmental modes in one species. We documented the density, size distribution, and reproductive activity of P. elegans at four sites in the Danish Isefjord‐Roskilde Fjord estuary complex, where all modes of reproduction were reported. We compared population dynamics of this species to environmental parameters such as salinity, temperature, and sediment characteristics (grain size, sorting, porosity, water content, organic content, C/N). We observed that new cohorts—resulting either from sexual or asexual reproduction—appeared in spring and fall, and old ones disappeared in late summer and winter. Sexual reproduction occurred from September until May, and although their timing was variable, there were two reproductive peaks at three sites. At those sites, we also observed a switch in larval developmental mode. Asexual reproduction peaked in April. While the seasonal dynamics can be related to temperature to a large extent, the differences in population dynamics among sites also correlated with sediment structure and salinity. Populations from sites with coarse and heterogeneous sediment had high levels of sexual reproduction. At the site with lower salinity, intermediate and benthic larvae were present during winter in contrast to pelagic larvae found at the other sites. However, we could not identify one clear environmental factor determining the mode of development. At present, it remains unclear to what degree genetic background contributes to mode of development. Hence, whether the differences in developmental mode are the result of genetically different cohorts will be further investigated.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号