首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1531篇
  免费   235篇
  国内免费   63篇
  2024年   10篇
  2023年   57篇
  2022年   63篇
  2021年   86篇
  2020年   144篇
  2019年   137篇
  2018年   110篇
  2017年   99篇
  2016年   108篇
  2015年   98篇
  2014年   113篇
  2013年   180篇
  2012年   86篇
  2011年   97篇
  2010年   35篇
  2009年   88篇
  2008年   71篇
  2007年   67篇
  2006年   50篇
  2005年   30篇
  2004年   16篇
  2003年   16篇
  2002年   13篇
  2001年   2篇
  2000年   2篇
  1999年   4篇
  1998年   5篇
  1997年   2篇
  1996年   5篇
  1995年   3篇
  1992年   3篇
  1991年   2篇
  1987年   1篇
  1985年   2篇
  1984年   2篇
  1983年   2篇
  1982年   5篇
  1981年   1篇
  1980年   3篇
  1979年   1篇
  1978年   4篇
  1976年   2篇
  1975年   1篇
  1973年   3篇
排序方式: 共有1829条查询结果,搜索用时 46 毫秒
1.
A review of in vitro mutagenesis assessment of metal compounds in mammalian and nonmammalian test systems has been compiled. Prokaryotic assays are ineffective or inconsistent in their detection of most metals as mutagens, with the notable exception of hexavalent chromium. Mammalian assay systems appear to be similarly inappropriate for the screening of metal compounds based upon the limited number of studies that have employed those compounds having known carcinogenic activity. Although of limited value as screening tests for the detection of potentially carcinogenic metal compounds, the well-characterized in vitro mutagenesis systems may prove to be of significant value as a means to elucidate mechanisms of metal genotoxicity.  相似文献   
2.
A method is proposed for assessing the biocidal efficacy of water-dispersed nanoparticles of silver. It is based on negative chemotaxis of the plasmodia of the slime mold Physarum polycephalum. Biocidal and repellent effects were compared for silver nanoparticles, Ag+ ions, and AOT in solution and in the agar gel. In such characteristics as increasing the period of auto-oscillations of contractile activity, decreasing the area of spreading on substrate, and substrate preference in spatial tests, silver nanoparticles proved to be substantially more effective than Ag+ and AOT. The lethal concentrations of the nanoparticles were close to those found earlier for bacteria and viruses. The chemotactic tests allow quantitative assessment of the biological reaction and monitoring its dynamics; in resolution, they are superior to the tests based on the lethal action of biocidal agents.  相似文献   
3.
Silver nanoparticles (AgNPs) were biosynthesized using fungal extract of Trametes trogii, a white rot basidiomycete involved in wood decay worldwide, which produces several ligninolytic enzymes. According to previous studies using fungi, enzymes are involved in nanoparticles synthesis, through the so-called green synthesis process, acting as reducing and capping agents. Understanding which factors could modify nanoparticles’ shape, size and production efficiency is relevant. The results showed that under the protocol used in this work, this strain of Trametes trogii is able to synthesize silver nanoparticles with the addition of silver nitrate (AgNO3) to the fungal extract obtained with an optimal incubation time of 72 h and pH 13, using NaOH to adjust pH. The progress of the reaction was monitored using UV–visible spectroscopy and synthesized AgNPs was characterized by scanning electron microscope (SEM), through in-lens and QBDS detectors, and energy-dispersive X-ray spectroscopy (EDX). Additionally, SPR absorption was modeled using Mie theory and simple nanoparticles and core-shell configurations were studied, to understand the morphology and environment of the nanoparticles. This protocol represents a simple and cheap synthesis in the absence of toxic reagents and under an environmentally friendly condition.  相似文献   
4.
The Tb3+ fluorescence is greatly enhanced, as a result of binding of various platinum coordination complexes to DNA, as compared to native DNA. The largest enhancement is observed for cis-Pt(NH3)2Cl2 but the fluorescence intensity does not however reach the level attained for thermally denatured DNA. Diethylenetriamine-Pt(II) produces very little increase of Tb3+ fluorescence. The electric dichroism in the DNA absorption band drastically decreases upon binding of the various Pt compounds investigated except diethylenetriamine-Pt. The results are discussed in terms of the various modes of binding of Pt derivatives to DNA, particularly in relation to the level of denaturation of the double helix.  相似文献   
5.
Interaction of cis-dichloro(dipyridine)platinum(II) (cis-PPC) with calf thymus DNA, calf thymus histone, l-amino acids, poly-l-amino acids, nucleosides, and nucleotides has been evaluated by equilibrium dialysis technics. At least a 28 % decrease in the association of cis-PPC with DNA occurs when the platinum compound is pre-incubated with l-amino acids. The greatest decrease in association is seen upon pre-incubation of the platinum compound with the free amino acids. Glut, Asp, Lys, Arg, and CySH, before the addition of a sack containing a solution of DNA. The low level of association between DNA and the amino acids tends to rule out competition between cis-PPC and amino acids for DNA association sites. cis-PPC was repelled from sacks containing positively charged poly-l-Lys, poly-l-Arg, and calf thymus histone; however, in the presence of poly-l-Glut and poly-l-Asp, cis-PPC associated with these negatively charged polymers to a considerable degree. Enhanced chloride dissociation from cis-PPC was observed in the presence of all of the amino acids and the nucleotides GMP, CMP, UMP, and TMP, but not in the presence of AMP or the nucleosides rG and dG. In the presence of calf thymus histone, the association of cis-PPC with calf thymus DNA was reduced by more than 50% at histone/DNA ratios of 0.8–1.0.These data suggest that cis-PPC or cis-Pt(II) may associate with electron-rich areas of not only nucleic acids and proteins but also with body pools of free nucleotides and amino acids. The presence of positively charged histones shielding DNA strands in vivo suggests that the most probable point of platinum-DNA association would be at de-repressed areas of DNA which are undergoing RNA synthesis. The aquated form of the platinum complex may also associate with acidic proteins which appear to be involved in the positive control of RNA synthesis and, as a result, this interaction may be of pharmacological significance.  相似文献   
6.
The increasing prevalence of antibiotic resistant bacteria is a significant healthcare crisis with substantial socioeconomic impact on global community. The development of new antibiotics is both costly and time-consuming prompting the exploration of alternative solutions such as nanotechnology which represents opportunities for targeted drug delivery and reduced MIC. However, concerns have arisen regarding genotoxic effects of nanoparticles on human health necessitating an evaluation of nanoparticle induced DNA damage.This study aimed to investigate the antibacterial potential of already prepared, characterized chitosan nanoparticles loaded with carvacrol and their potential synergism with Topoisomerase II inhibitors against S. aureus, E. coli and S. typhi using agar well diffusion, microdilution and checkerboard method. Genotoxicity was assessed through comet assay.Results showed that both alone and drug combinations of varying concentrations exhibited greater zones of inhibition at higher concentrations. Carvacrol nanoparticles combined with ciprofloxacin and doxorubicin significantly reduced MIC compared to the drugs used alone. The MIC50 values for ciprofloxacin were 35.8 µg/ml, 48.74 µg/ml, 35.57 µg/ml while doxorubicin showed MIC50 values of 20.79 µg/ml, 34.35 µg/ml, 25.32 µg/ml against S. aureus, E. coli and S. typhi respectively. The FICI of ciprofloxacin and doxorubicin with carvacrol nanoparticles found ≤ 0.5 Such as 0.44, 0.44,0.48 for ciprofloxacin and 0.45, 0.45, 0.46 for doxorubicin against S. aureus, E. coli and S. typhi respectively revealed the synergistic effect. The analysis of comet assay output images showed alteration of DNA at high concentrations.Our results suggested that carvacrol nanoparticles in combination with Topoisomerase inhibitors may prevent and control the emergence of resistant bacteria with reduced dose.  相似文献   
7.
Spray-induced gene silencing (SIGS) is an innovative and eco-friendly technology where topical application of pathogen gene-targeting RNAs to plant material can enable disease control. SIGS applications remain limited because of the instability of RNA, which can be rapidly degraded when exposed to various environmental conditions. Inspired by the natural mechanism of cross-kingdom RNAi through extracellular vesicle trafficking, we describe herein the use of artificial nanovesicles (AVs) for RNA encapsulation and control against the fungal pathogen, Botrytis cinerea. AVs were synthesized using three different cationic lipid formulations, DOTAP + PEG, DOTAP and DODMA, and examined for their ability to protect and deliver double stranded RNA (dsRNA). All three formulations enabled dsRNA delivery and uptake by B. cinerea. Further, encapsulating dsRNA in AVs provided strong protection from nuclease degradation and from removal by leaf washing. This improved stability led to prolonged RNAi-mediated protection against B. cinerea both on pre- and post-harvest plant material using AVs. Specifically, the AVs extended the protection duration conferred by dsRNA to 10 days on tomato and grape fruits and to 21 days on grape leaves. The results of this work demonstrate how AVs can be used as a new nanocarrier to overcome RNA instability in SIGS for crop protection.  相似文献   
8.
In recent years, drug manufacturers and researchers have begun to consider the nanobiotechnology approach to improve the drug delivery system for tumour and cancer diseases. In this article, we review current strategies to improve tumour and cancer drug delivery, which mainly focuses on sustaining biocompatibility, biodistribution, and active targeting. The conventional therapy using cornerstone drugs such as fludarabine, cisplatin etoposide, and paclitaxel has its own challenges especially not being able to discriminate between tumour versus normal cells which eventually led to toxicity and side effects in the patients. In contrast to the conventional approach, nanoparticle-based drug delivery provides target-specific delivery and controlled release of the drug, which provides a better therapeutic window for treatment options by focusing on the eradication of diseased cells via active targeting and sparing normal cells via passive targeting. Additionally, treatment of tumours associated with the brain is hampered by the impermeability of the blood–brain barriers to the drugs, which eventually led to poor survival in the patients. Nanoparticle-based therapy offers superior delivery of drugs to the target by breaching the blood–brain barriers. Herein, we provide an overview of the properties of nanoparticles that are crucial for nanotechnology applications. We address the potential future applications of nanobiotechnology targeting specific or desired areas. In particular, the use of nanomaterials, biostructures, and drug delivery methods for the targeted treatment of tumours and cancer are explored.  相似文献   
9.
Liver fibrosis is one of the major liver complications which eventually progresses to liver cirrhosis and liver failure. Cerium oxide nanoparticles, also known as nanoceria (NC) are nanoparticles with potential antioxidant and anti-inflammatory activities. Herein, we evaluated the hepatoprotective and anti-fibrotic effects of nanoceria (NC) against bile duct ligation (BDL) induced liver injury. NC were administered i.p. for 12 days (0.5 and 2 mg/kg) to C57BL/6J mice. The biochemical markers of liver injury, oxidative and nitrosative stress markers, inflammatory cytokines were evaluated. Fibrosis assessment and mechanistic studies were conducted to assess the hepatoprotective effects of NC. Administration of NC proved to significantly ameliorate liver injury as evident by reduction in SGOT, SGPT, ALP and bilirubin levels in the treated animals. NC treatment significantly reduced the hydroxyproline levels and expression of fibrotic markers. In summary, our findings establish the hepatoprotective and anti-fibrotic effects of NC against BDL induced liver injury and liver fibrosis. These protective effects were majorly ascribed to their potential ROS inhibition and antioxidant activities through catalase, superoxide dismutase (SOD)-mimetic properties and auto-regenerating capabilities.  相似文献   
10.
The extensive use of nanoparticles (NPs) in diverse applications causes their localization to aquatic habitats, affecting the metabolic products of primary producers in aquatic ecosystems, such as algae. Synthesized calcium oxide nanoparticles (CaO NPs) are of the scarcely studied NPs. Thus, the current work proposed that the exposure to CaO NPs may instigate metabolic pathway to be higher than that of normally growing algae, and positively stimulate algal biomass. In this respect, this research was undertaken to study the exposure effect of CaO NPs (0, 20, 40, 60, 80, and 100 µg mL−1 ) on the growth, photosynthesis, respiration, oxidative stress, antioxidants, and lipid production of the microalga Coccomyxa chodatii SAG 216-2. The results showed that the algal growth concomitant with chlorophyll content, photosynthesis, and calcium content increased in response to CaO NPs. The contents of biomolecules such as proteins, amino acids, and carbohydrates were also promoted by CaO NPs with variant degrees. Furthermore, lipid production was enhanced by the applied nanoparticles. CaO NPs induced the accumulation of hydrogen peroxide, while lipid peroxidation was reduced, revealing no oxidative behavior of the applied nanoparticles on alga. Also, CaO NPs have a triggering effect on the antioxidant enzymes such as superoxide dismutase, catalase, ascorbate peroxidase, and guaiacol peroxidase. The results recommended the importance of the level of 60 µg mL−1 CaO NPs on lipid production (with increasing percentage of 65% compared to control) and the highest dry matter acquisition of C. chodatii. This study recommended the feasibility of an integrated treatment strategy of CaO NPs in augmenting biomass, metabolic up-regulations, and lipid accumulation in C. chodatii.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号