首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   638篇
  免费   39篇
  国内免费   56篇
  733篇
  2024年   1篇
  2023年   4篇
  2022年   9篇
  2021年   8篇
  2020年   12篇
  2019年   26篇
  2018年   16篇
  2017年   8篇
  2016年   11篇
  2015年   20篇
  2014年   27篇
  2013年   43篇
  2012年   22篇
  2011年   42篇
  2010年   33篇
  2009年   26篇
  2008年   34篇
  2007年   31篇
  2006年   44篇
  2005年   45篇
  2004年   25篇
  2003年   27篇
  2002年   30篇
  2001年   22篇
  2000年   15篇
  1999年   10篇
  1998年   24篇
  1997年   12篇
  1996年   6篇
  1995年   12篇
  1994年   8篇
  1993年   8篇
  1992年   11篇
  1991年   10篇
  1990年   4篇
  1989年   6篇
  1988年   3篇
  1987年   4篇
  1986年   8篇
  1985年   5篇
  1984年   7篇
  1983年   3篇
  1982年   1篇
  1980年   2篇
  1979年   4篇
  1978年   1篇
  1977年   1篇
  1976年   1篇
  1974年   1篇
排序方式: 共有733条查询结果,搜索用时 31 毫秒
1.
The aim of this study was to investigate the possibility of enhancing the yield of tissue plasminogen activator (tPA) from two epithelial cell lines of normal (non-malignant) derivation grown in tissue culture. The three agents used in this investigation were chosen because of their proven enhancing effect on analogous cells or products. The anabolic hormone stanozolol was found to have no significant stimulatory effect on these cell lines. A phorbol acetate (12-O-tetradecanoylphorbol 13-acetate) caused a twofold enhancement in tPA yield but the most significant results were obtained with 5-azacytidine. This agent increased the yield by up to fourfold in small stationary cultures and threefold in large-scale microcarrier cultures. A combination of azacytidine and phorbol acetate did not have an additive effect on total yield but did alter the kinetics of tPA expression with time. Indications were that the maximum yield with these types of potentiating agents was achieved as it could not be increased by using a combination of two different agents.  相似文献   
2.
Summary Human diploid fibroblasts were cultured on microcarriers made from DEAE-dextran, denatured collagen, DEAE-dextran linked to denatured collagen, and glass. Cells grown on these four substrates were examined for the production of proteolytic enzymes and arachidonic acid metabolites. Culture fluids from cells grown on the DEAE-dextran microcarriers contained the highest amounts of proteolytic enzyme activity. Both plasminogen-independent and plasminogen-dependent fibrinolytic activities were present and the plasminogen-dependent activity seemed to result from the presence of both urokinase and tissue plasminogen activator. Culture fluid from the cells grown on the glass microcarriers contained the least amount of protease activity, and nearly all of the plasminogen-activator activity seemed to be of the urokinase type. Protease activity in the culture fluids of cells grown on the other two substrates were intermediate. With regard to arachidonic acid metabolites, cells grown on the DEAE-dextran microcarriers produced the highest amounts of cyclooxygenase products but very low levels of lipoxygenase metabolites. Cells grown on the other three substrates produced comparable amounts of various cyclooxygenase products (lower than that produced by cells on the DEAE-dextrans substrate). Cells grown on the glass microcarriers also produced detectable amounts of two lipoxygenase metabolites—leukotriene B4 and leukotriene C4. Inasmuch as both proteolytic enzymes and arachidonic acid metabolites regulate basic cell properties, the differential amount of these metabolites observed in the culture fluids on the various substrates may contribute to the biological differences that exist on these substrates. This study was supported in part by grants R44 CA 36656 and IK08HL01332-01 from the Public Health Service, U. S. Department of Health and Human Services and by grant BC-512 from the American Cancer Society. JDH is a research fellow of the American Lung Association.  相似文献   
3.
M Reboud-Ravaux 《Biochimie》1985,67(12):1197-1216
Considerable interest in plasminogen activators as human thrombolytic drugs has stimulated rapid biotechnologic progresses. These enzymes have been classified in two immunochemically distinct groups: "urokinase-like" activators or u-PA which do not interact with fibrin and "tissue activator-like" activators or t-PA which interact with fibrin. Plasminogen activators are widely distributed in normal and malignant tissues and they are implicated in various physiological and pathological processes. They maintain the functional integrity of the vascular system and their presence may be of importance in tissue remodeling and cell migration. Urokinase and streptokinase are used in human thrombolytic therapy. However, the properties displayed by t-PA suggest that this enzyme may be a superior fibrinolytic agent. The primary structures of urokinase and t-PA are known; both enzymes have been synthesized by DNA technology. In order to produce t-PA in large quantities by gene cloning, intensive studies are conducted by pharmaceutical industries. Clinical trials using t-PA for dissolving thrombi in coronary heart disease, strokes and pulmonary embolism are in progress. This review presents the molecular and structural properties of plasminogen activators, as well as related physiological, pathological and therapeutic aspects.  相似文献   
4.
Fibrinolytic system is one of the major proteolytic pathways in vivo and primarily responsible for dissolution of thrombi. Two enzymes are primarily involved in this proteolytic system; plasminogen activator (PA) and plasmin. Plasmin is formed by a limited proteolysis of plasminogen by PA, which is mainly synthesized by and secreted from vascular endothelial cells. This proteolytic process proceeds physiologically only on the surface of fibrin. Thus, initiation and progression of the fibrinolytic process depend on the function of endothelial cells and fibrin formation. Endothelial cells may also synthesize and excrete PA inhibitor (PAI) which inhibits immediately, PA once released. The rates of synthesis and excretion of PA and PAI by endothelial cells are regulated by various factors. Among them, thrombin stimulates the release of PA whereas activated protein C may decrease the release of PAI. Thus, both enzymes enhance fibrinolytic potential. PA which has escaped from inhibition by PAI binds to fibrin. 2-Plasmin inhibitor (2PI) inhibits the binding of plasminogen to fibrin, thereby suppressing this fibrin-associated plasminogen activation. A part of 2PI is cross-linked to fibrin by activated factor XIII when fibrin is formed, and the 2PI thus cross-linked to fibrin inhibits in situ plasmin formed on fibrin. Thus, 2PI as well as PAI plays a central role in inhibition of fibrinolysis.  相似文献   
5.
Structure and function of human tissue-type plasminogen activator (t-PA)   总被引:5,自引:0,他引:5  
Full-length tissue-type plasminogen activator (t-PA) cDNA served to construct deletion mutants within the N-terminal "heavy" (H)-chain of the t-PA molecule. The H-chain cDNA consists of an array of structural domains homologous to domains present on other plasma proteins ("finger," "epidermal growth factor," "kringles"). These structural domains have been located on an exon or a set of exons. The endpoints of the deletions nearly coincide with exon-intron junctions of the chromosomal t-PA gene. Recombinant t-PA deletion mutant proteins were obtained after transient expression in mouse Ltk- cells, transfected with SV40-pBR322-derived t-PA cDNA plasmids. It is demonstrated that the serine protease moiety of t-PA and its substrate specificity for plasminogen is entirely contained within the C-terminal "light" (L)-chain of the protein. The presence of cDNA, encoding the t-PA signal peptide preceding the remaining portion of t-PA, suffices to achieve secretion of (mutant) t-PA into the medium. The stimulatory effect of fibrin on the plasminogen activator activity of t-PA was shown to be mediated by the kringle K2 domain and, to a lesser extent, by the finger domain. The other domains on the H-chain, kringle K1, and the epidermal growth-factor-like domain, do not contribute to this property of t-PA. These findings correlate well with the fibrin-binding properties of the rt-PA deletion-mutant proteins, indicating that stimulation of the activity is based on aligning of the substrate plasminogen and its enzyme t-PA on the fibrin matrix. The primary target for endothelial plasminogen activator inhibitor (PAI) is located within the L-chain of t-PA. Deleting specific segments of t-PA H-chain cDNA and subsequent transient expression in mouse Ltk- cells of t-PA deletion-mutant proteins did not affect the formation of a stable complex between mutant t-PA and PAI.  相似文献   
6.
Bowes melanoma cells were cultivated successfully in a serum-free medium which was constructed by the concept of maximum retention of proteins from fractionated human plasma having growth stimulatory activities. The cells could be cultivated in the serum-free medium without any adaptation period. The major serum-free component of the medium was the fraction IV-4 + V of the Cohn fractionation process of human plasma. Approximately six times increase of tissue-type plasminogen activator (t-PA) activity as compared with that in serum-free medium even though the cell growth was much slower. In addition, the growth stimulatory activities of thrombin and fibronectin were investigated during the cultivation of Bowes melanoma cells in this serum-free medium. These proteins contributed significantly to the enhanced growth of cells by reducing doubling time to 25 and 35 h as compared with 55 h in the serum-free medium without them. Especially, fibronectin supported cells to propagate near to the maximum cell density achieved in the medium with 10% FBS.  相似文献   
7.
Methjylation in Physarum DNA   总被引:4,自引:0,他引:4  
J G Reilly  R Braun  C A Thomas 《FEBS letters》1980,116(2):181-184
  相似文献   
8.

Background

ErbB receptors, EGFR and HER2, have been implicated in the development and progression of colon cancer. Several intracellular pathways are mediated upon activation of EGFR and/or HER2 by EGF. However, there are limited data regarding the EGF-mediated signaling affecting functional cell properties and the expression of extracellular matrix macromolecules implicated in cancer progression.

Methods

Functional assays, such as cell proliferation, transwell invasion assay and migration were performed to evaluate the impact of EGFR/HER2 in constitutive and EGF-treated Caco-2 cells. Signaling pathways were evaluated using specific intracellular inhibitors. Western blot was also utilized to examine the phosphorylation levels of ERK1/2. Real time PCR was performed to evaluate gene expression of matrix macromolecules.

Results

EGF increases cell proliferation, invasion and migration and importantly, EGF mediates overexpression of EGFR and downregulation of HER2. The EGF–EGFR axis is the main pathway affecting colon cancer's invasive potential, proliferative and migratory ability. Intracellular pathways (PI3K-Akt, MEK1/2-Erk and JAK-STAT) are all implicated in the migratory profile. Notably, MT1- and MT2-MMP as well as TIMP-2 are downregulated, whereas uPA is upregulated via an EGF–EGFR network. The EGF–EGFR axis is also implicated in the expression of syndecan-4 and TIMP-1. However, glypican-1 upregulation by EGF is mainly mediated via HER2.

Conclusions and general significance

The obtained data highlight the crucial importance of EGF on the expression of both receptors and on the EGF–EGFR/HER2 signaling network, reveal the distinct roles of EGFR and HER2 on expression of matrix macromolecules and open a new area in designing novel agents in targeting colon cancer. This article is part of a Special Issue entitled Matrix-mediated cell behaviour and properties.  相似文献   
9.
朱伟峰  陈露  王芳  胡波  陈萌萌 《微生物学报》2021,61(10):3264-3275
巴氏杆菌(主要是多杀性巴氏杆菌)可以引起多种动物疫病(巴氏杆菌病),同时也引起人类感染发病。[目的] 研究巴氏杆菌糖酵解酶对宿主细胞(兔肾细胞)和两种常见分子[纤连蛋白(fibronectin,Fn)和血浆纤维蛋白溶解酶原(plasminogen,Plg)]的黏附作用。[方法] 采用原核表达系统对多杀性巴氏杆菌的糖酵解酶进行表达并纯化及制备多克隆抗体,通过菌体表面蛋白定位检测、黏附与黏附抑制等实验探究巴氏杆菌糖酵解酶的黏附作用。[结果] 菌体表面蛋白检测结果显示除烯醇化酶和丙酮酸激酶外的7个糖酵解酶在多杀性巴氏杆菌表面存在。这7个糖酵解酶均能黏附兔肾细胞,但仅有磷酸葡萄糖异构酶的多克隆抗体能对多杀性巴氏杆菌黏附宿主细胞产生抑制作用。Far Western blotting结果显示9个糖酵解酶均能结合宿主Fn和Plg。招募抑制实验结果显示磷酸葡萄糖异构酶、醛缩酶、磷酸甘油酸变位酶的抗体对多杀性巴氏杆菌结合Fn和Plg都有抑制作用,磷酸果糖激酶、丙糖磷酸异构酶、甘油醛-3-磷酸脱氢酶、磷酸甘油激酶抗体仅对多杀性巴氏杆菌结合Fn或Plg有抑制作用。[结论] 多杀性巴氏杆菌糖酵解酶成员葡萄糖异构酶、磷酸果糖激酶、醛缩酶、丙糖磷酸异构酶、甘油醛-3-磷酸脱氢酶、磷酸甘油激酶、磷酸甘油酸变位酶在多杀性巴氏杆菌黏附宿主细胞或分子过程中发挥作用。该研究的完成将加深巴氏杆菌病分子发病机制的认识,并为巴氏杆菌病的诊断标识筛选、新型疫苗创制和药物靶标筛选等提供基础数据。  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号