首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   34篇
  免费   1篇
  国内免费   4篇
  39篇
  2023年   2篇
  2022年   2篇
  2021年   1篇
  2020年   3篇
  2019年   1篇
  2016年   1篇
  2015年   2篇
  2014年   1篇
  2013年   1篇
  2008年   2篇
  2006年   1篇
  2005年   2篇
  2004年   2篇
  2003年   1篇
  2001年   4篇
  2000年   1篇
  1998年   1篇
  1997年   2篇
  1996年   1篇
  1995年   1篇
  1991年   1篇
  1990年   1篇
  1989年   1篇
  1988年   2篇
  1985年   1篇
  1979年   1篇
排序方式: 共有39条查询结果,搜索用时 15 毫秒
1.
Summary Allelic frequencies and genotypic distributions in three polymorphic enzyme systems demonstrated genetic differentiation over extraordinarily short distances in a population of black pineleaf scale insects infesting ponderosa pine trees. A hierarchical analysis of the population genetic structure showed significant differences between demes on different twigs within individual host trees, between demes on neighboring trees, and between demes in pine plots on adjacent city blocks. Allelic frequencies at a malic enzyme locus were associated with deme-to-deme variation in ecological correlates of insect fitness, suggesting adaptive hypotheses about the causes of population subdivision.  相似文献   
2.
Abstract

The Iberian Peninsula hosts six native pine species, which are distributed according to an altitudinal gradient from coastal to mountain areas, close to 1000 m a.s.l. Root hydraulic responses are the key factors of spatial segregation of trees in response to environmental factors such as temperature and water availability, and they will be a determinant of future population and species spatial dynamics in a changing climate scenario. Root hydraulic responses to soil water temperatures ranging from 30°C to 0°C were compared for young plants of these six aforementioned species. Hydraulic resistance (Rh) increased for all species in response to temperature decrease. Mountain pines showed higher Rh values than coastal pines at all temperatures, and showed a more prompt and marked hydraulic response when temperatures dropped down. Data point out that mountain pines display a clear mechanism to avoid cold embolism and secondary water stress, while coastal species have a limited responsiveness to temperature changes due to scarce hydraulic regulation. These differences in hydraulic behaviour support the spatial segregation between mountain and coastal pines in the Iberian Peninsula, and will be one of the factors at the basis of the future shifts of species and populations that will be associated to climate change.  相似文献   
3.
Fossil wood finds reveal a high resolution paleoclimatic proxy record of Lateglacial and Early Holocene. Eighty-one buried fossil pine stumps have been excavated on the construction site (Gaenziloo) of the A4-highway tunnel through Uetliberg near Zurich (Switzerland). The trees were buried during their lifetime by loamy alluvia washed down from the upper part of the slopes. The stumps have remained well preserved for more than 13,500 years. The cross sections of the trunks were analyzed dendrochronologically. The sections were dated by 14C, and 14C age vs. ring number were obtained from decadal sample segments.Three floating chronologies were built. They cover a time span of 428 years in the Mid-Allerød (GAEALLCH_A), 561 years in the Late-Allerød (GAEALLCH_D) and 212 years in the Younger Dryas (GAEYD_A). Visual synchronization, t-values, percentages of parallel variation (‘Gleichlaeufigkeit’) and radiocarbon wiggle matching (14C age determinations on a decadal scale) as well as a check by the program Cofecha support the validity of the resulting chronologies.The two Allerød-chronologies from Gaenziloo were linked with two chronologies from Daettnau (DAEALCH_1 and DAEALCH_2) published by Kaiser, K.F. (1993. Beiträge zur Klimageschichte vom Hochglazial bis ins frühe Holozän, rekonstruiert mit Jahrringen und Molluskenschalen aus verschiedenen Vereisungsgebieten. Ziegler Druck- und Verlags-AG, Winterthur. 206pp). They extend the existing floating Swiss chronology in the Late-Allerød by a total of 186 years. Unfortunately independent chronology GAEYD_A does not overlap with the actual absolute chronology developed by the tree-ring laboratory of the University of Hohenheim (Friedrich, M. et al., 2004. The 12,460 year Hohenheim oak and pine tree-ring chronology from Central Europe – A unique annual record for radiocarbon calibration and paleo-environment reconstructions. Radiocarbon 46(3), 1111–22.).  相似文献   
4.
5.
对安徽省国外松大面积衰退和枯死原因的调查研究表明,造成这种衰退和枯死的现象是多方面因素共同作用的结果,是一种林木衰退病.该衰退病的发生原因:1)诱发因素:温度年较差较大、年降雨量分布不均匀、土壤粘重板结或容重过大、地势低洼积水、土壤瘠薄、林分密度过大;2)激化因素:干旱严重重复发生、割脂过早过度、霜冻、食叶害虫等害虫危害;松针褐斑病等病害侵害;3)促进因素:松枯梢病菌、根腐病菌、立木腐朽病菌、天牛、小蠹虫等病虫害危害.  相似文献   
6.
Protocols were developed for the micropropagation of shortleaf pine (Pinus echinata Mill.), loblolly (P. taeda L.) x shortleaf pine hybrids, and Virginia pine (P. virginiana Mill.). For meristematic tissue induction, modified Gresshoff & Doy (GD) medium with a high concentration of benzyladenine (BA) and short pulse treatment was best for loblolly x shortleaf hybrids whereas a lower concentration of BA and longer pulse treatment was best for shortleaf and Virginia pines. Shoot growth rate for all species was generally slower on Schenk & Hildebrandt medium than on GD medium. Addition of activated charcoal improved shoot growth of shortleaf pine but not of Virginia pine or the loblolly x shortleaf hybrids. Separation of shoots was beneficial before placing in the advanced growth medium. Both GD and Litvay's media produced good advanced shoot growth, especially following the addition of 0.5% activated charcoal. Individual shoot heights of 2–3 cm and 8–12 weeks of age after separation from the cluster were best for rooting. Root induction declined rapidly thereafter. Modified GD medium with 0.5 mg 1-1 -naphthaleneacetic acid plus 1.0 mg 1-1 3-indolebutyric acid and 20 g 1-1 sucrose was best for root induction for all species except shortleaf pine. Addition of activated charcoal produced better root systems. Too high a light intensity resulted in a lowered frequency of rooting. A large number of plantlets was produced.  相似文献   
7.
Breeding for resistance to forest pests and pathogens is emerging as a promising tool for minimising the impact of the increasing biotic threats that our forests are experiencing as a consequence of global change. Efficient phenotyping protocols of resistance are urgently needed. Here we present the results of two experiments aimed to determine whether the variation in resistance to the pine weevil Hylobius abietis, a harmful pest of European conifers, can be inferred by nondestructive bioassays using excised plant material collected in forest genetic trials. Weevil damage and amount of nonvolatile resin induced by weevil feeding were assessed in young trees and in branches of adult trees using several phenotyping procedures (bioassays using either living trees, excised plant material and cut stem twigs) on four pine species (Pinus pinaster, P. radiata, P. sylvestris and P. pinea). Half of the plants were previously induced with methyl jasmonate (MJ), a treatment that is known to affect resistance to the pine weevil. In Experiment 1, living and excised plants showed parallel results: MJ treatment significantly reduced weevil damage, and saplings responded to weevil damage locally increasing the nonvolatile resin (NVR) in the stems proportionally to the damage suffered. This response was, however, slightly lower in excised than in living saplings. On the contrary, patterns of weevil feeding on stem twigs completely departed from those observed in living and excised seedlings. Moreover, cut stem twigs were unable to respond to weevil feeding increasing NVR according to the weevil damage. In Experiment 2, assessment of weevil damage on excised branches explained around 50% of variation in damage on living branches. This relationship became much more pronounced (R2 = 0.81) when explored at the mean treatment level; branch manipulation did not alter the patterns of variation in resistance across pine species or MJ treatments. Irrespective of the assessment procedure, MJ consistently decreased weevil damage in all pine species, with larger reduction in weevil damage in stone and maritime pine than in radiata and Scots pine. Radiata pine was the most resistant while Scots pine was the most susceptible to the pine weevil. Overall, results suggest that using excised plant material is an operative alternative for phenotyping weevil resistance whenever care is taken to maintain the functionality of the excised plant material. This will allow taking advantage of multiple available conifer genetic trials to deepen the ecological genetics of resistance to the pine weevil and to screen for resistance without compromising the long‐term utility of those genetic trials.  相似文献   
8.
A method for Agrobacterium tumefaciens-mediated transformation of Pinus radiata cotyledon explants was developed using commercially available open-pollinated seed. Pinus radiata is the most widely planted commercial conifer species in the Southern Hemisphere. Reports on transformation of this species have relied on particle bombardment of embryogenic callus derived from immature embryos. The main drawback to the method is the small number of genotypes that are amenable to transformation and regeneration. Since more than 80% of genotypes of radiata pine can be regenerated using cotyledons from mature seed, cotyledon explants were cocultivated with A. tumefaciens strain AGL1 containing a plasmid coding for the neomycin phosphotransferase II (nptII) gene and the -glucuronidase (GUS) gene (uidA). Transformed shoots were selected using either geneticin or kanamycin. Critical factors for successful transformation were survival of the cotyledons after cocultivation and selection parameters. Of the 105 putative transformants that were recovered from selection media, 70% were positive for integration of the nptII gene when analysed by PCR. GUS histochemical assay for uidA expression was unreliable because of reaction inhibition by unidentified compounds in the pine needles. Further, only 4 of the 26 independent transformants characterised by PCR and Southern analysis contained an intact copy of both genes. The remaining 22 transformants appeared to have a truncated or rearranged copy of the T-DNA. It is possible that the truncation/rearrangements are due to the Cauliflower mosaic virus (CaMV) 35S promoter. Analysis of the T-DNA junction sites and sequencing of the introduced DNA will help elucidate the nature of T-DNA insertion so that genetic modification of radiata pine can be targeted effectively.Communicated by P. Debergh  相似文献   
9.
Resin ducts provide important characters for classifying the Pinaceae. Here we study Pinus massoniana and P. taiwanensis and show that the generally-used term marginal (=external) resin duct, applied to ducts in needle leaves, needs to be further differentiated into marginal (strongly attaching to the dermal tissue, and lacking the complete ring structure formed by the sheath cells) and submarginal ducts (adjacent to hypodermal cells, with a complete ring structure formed by the sheath cells). On this basis P. massoniana and P. taiwanensis, which are nearly indistinguishable based on external morphology, are clearly differentiated. Their similar morphology has led to a long standing debate on where P. massoniana occurs in Taiwan. Based on this new classification of resin ducts, we examined old herbarium specimens previously identified as P. massoniana, surveyed current hard pines in Taiwan, and checked historical documents. Needle leaves of these two taxa were studied and compared with the material of P. massoniana from mainland China as a reference. Pinus massoniana shows almost exclusively marginal resin ducts, with extremely rare changes along the length of the duct to submarginal positions. In contrast, P. taiwanensis shows a mixture of medial, submarginal, septal, and rarely endonal ducts, with occasional changes of the duct between various types. Re-identification of specimens showed that only 5 specimens are possible native P. massoniana collected from northern Taiwan and the others are all P. taiwanensis. The hard pine of Junjianyan is unexpectedly found to be the only currently known P. massoniana in Taiwan, which is likely a relic of historical afforestation. The hard pine from Huoyansan and the Coastal Range, which is widely accepted as P. massoniana, is not this species. In addition to the taxonomic value of the new definition applied to these two studied taxa, we expect that this approach can generally be applied distinguishing the respective characters in the genus Pinus and in other conifers.  相似文献   
10.
The seeds of Cembrae pines are dispersed by nutcrackers (Genus Nucifraga), which cache seeds in soil during autumn. The dispersal and establishment of seedlings via this mutualistic relationship is highly successful. On the other hand, irregular quality of seed crops and lack of detailed knowledge on germination process of Cembrae pine seeds hamper effective seedling production in the nursery. Therefore we studied basic structures and maturity of whitebark pine (Pinus albicaulis Engelm.) and Siberian stone pine (Pinus sibirica Du Tour) seeds, as well as structural changes during a multi-step treatment of whitebark pine seeds, using field emission scanning electron microscopy, transmission electron microscopy and light microscopy. The most striking differences compared to many other conifer seeds were the solid surface structures, early structural differentiation of the embryo, clustering of the thin-walled megagametophyte cells, and great accumulation of starch in both the untreated and treated seeds. Protein bodies of the embryo were in early developmental stages, whereas in the megagametophyte their stages varied. The number, form and size of lipid bodies also varied within different parts of the seed, and lipids dissolved easily. Our results indicated that despite maturity of the seed coat and advanced differentiation of the embryo, the embryo and the megagametophyte were still immature. These morphological features and a notable proportion of storage reserves remaining in unstable form may, however, be advantageous for maintaining viability and reaching maturity within a soil seed bank. Well-controlled pre-treatment simulating natural conditions should result in improved germination.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号