首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   71篇
  免费   2篇
  国内免费   4篇
  2022年   1篇
  2020年   1篇
  2019年   1篇
  2017年   1篇
  2015年   3篇
  2014年   3篇
  2013年   2篇
  2012年   4篇
  2011年   4篇
  2010年   1篇
  2009年   3篇
  2008年   1篇
  2007年   2篇
  2006年   7篇
  2005年   6篇
  2004年   2篇
  2003年   7篇
  2002年   6篇
  2001年   3篇
  2000年   2篇
  1999年   2篇
  1998年   2篇
  1997年   1篇
  1995年   3篇
  1994年   1篇
  1993年   4篇
  1992年   1篇
  1991年   1篇
  1990年   1篇
  1988年   1篇
排序方式: 共有77条查询结果,搜索用时 15 毫秒
1.
Abstract. The effect of cadmium on growth of Cd-tolerant and -sensitive plants of Silene vulgaris and on the production of metal-binding compounds in both types of plants was studied. The Cd-content of the roots and the Cd-root/shoot ratio was higher in Cd-tolerant plants. A Cd-binding compound (Cd-BC) with an apparent molecular mass of 14.5 kD was isolated from the roots of Cd-tolerant and -sensitive plants, grown in 40 mmol m−3 Cd for 21 d. More than 60% of the total Cd in the roots was associated with this compound. Determination of the amino-acid content of the purified Cd-containing compound from both types of plants showed that they possessed a similar amino-acid composition to that of phytochelatins. Only the bis- and tris-forms were present. The amount of Cd and sulphide associated with phytochelatin was greater in tolerant plants than in sensitive ones suggesting that an increased sulphide content of complexes containing peptide, sulphide and Cd may form the basis of evolved Cd-tolerance in Silence vulgaris.  相似文献   
2.
The role of phytochelates in plant growth and productivity   总被引:1,自引:0,他引:1  
Plants require minimal amounts of certain metals (Zn,Fe,Cu,etc) for optimal growth and productivity, but excess of these metals leads to cell death. When growth is limited by metal excess or metal deficiency plants respond by synthesizing nonproteinogenic chelating substances. Phytosiderophores are secreted by roots of iron deficient grasses and are important in providing sufficient Fe for normal growth. In response to growth-inhibitory levels of heavy metals plants synthesize metal-binding phytochelatins which detoxify excess metals. Biostimulants such as humic substances and oligomers of lactic acid have properties in common with both phytosiderophores and phytochelatins. The word phytochelates is proposed as a generic term to cover substances that affect plant growth by acting as chelating agents.  相似文献   
3.
4.
ABSTRACT

Phytoremediation is an eco friendly approach for remediation of contaminated soil and water using plants. Phytoremediation is comprised of two components, one by the root colonizing microbes and the other by plants themselves, which degrade the toxic compounds to further non-toxic metabolites. Various compounds, viz. organic compounds, xenobiotics, pesticides and heavy metals, are among the contaminants that can be effectively remediated by plants. Plant cell cultures, hairy roots and algae have been studied for their ability to degrade a number of contaminants. They exhibit various enzymatic activities for degradation of xenobiotics, viz. dehalogenation, denitrification leading to breakdown of complex compounds to simple and non-toxic products. Plants and algae also have the ability to hyper accumulate various heavy metals by the action of phytochelatins and metallothioneins forming complexes with heavy metals and translocate them into vacuoles. Molecular cloning and expression of heavy metal accumulator genes and xenobiotic degrading enzyme coding genes resulted in enhanced remediation rates, which will be helpful in making the process for large-scale application to remediate vast areas of contaminated soils. A few companies worldwide are also working on this aspect of bioremediation, mainly by transgenic plants to replace expensive physical or chemical remediation techniques. Selection and testing multiple hyperaccumulator plants, protein engineering of phytochelatin and membrane transporter genes and their expression would enhance the rate of phytoremediation, making this process a successful one for bioremediation of environmental contamination. Recent years have seen major investments in the R&D, which have also resulted in competition of filing patents by several companies for economic gains. The details of science & technology related to phytoremediation have been discussed with a focus on future trends and prospects of global relevance.  相似文献   
5.
The effect of exogenous reduced glutathione (GSH) on alleviation of hexavalent chromium (Cr6+) toxicity to rice seedlings and its physiological mechanisms were comprehensively investigated in a series of experiments. Our results showed that growth and nutrient uptake of rice seedlings were dramatically reduced under 100 μM Cr6+ stress, and the reduction was significantly alleviated by exogenous GSH. Cr6+ stress also reduced cell viability in root tips and damaged ultrastructure of both chloroplasts and root cells, while the addition of GSH alleviates those negative effects. Cr-induced toxicity and GSH-caused Cr alleviation differed significantly between Cr-tolerant Line 117 (L117) and Cr-sensitive Line 41 (L41). Under Cr6+ stress, cystine content was increased and GSH content was decreased in rice plants, exogenous GSH, however, mitigated the Cr-toxicity by reversing the Cr-induced changes of the two compounds. The types of Cr-induced secretion of organic acids varied between the genotypes, where reduction in the contents of acetic and lactic acids and tartaric and malic acids were observed in L117 and L41, respectively. The addition of GSH alleviated the reduction of secretion of these organic acids. Exogenous GSH also altered the forms of Cr ions in the rhizosphere and the fraction of distribution at subcellular level in both shoots and roots. It may be concluded that the alleviation of Cr6+ toxicity by exogenous GSH is directly attributed to its regulation on forms of Cr ions in rhizosphere and their distribution at subcellular levels.  相似文献   
6.
The relationship between the age of leaf tissue and response of the photosynthetic apparatus and phytochelatin accumulation to Cd treatment was studied. Studies were carried out with seedlings of Zea mays L. cv. Hidosil grown in the presence of 100-200 mumol/L Cd for 14 days under low light conditions. The third leaf was divided into 3 segments of equal length differing in the stage of tissue maturity and used for measurements of chlorophyll content, chlorophyll fluorescence, glutathione and phytochelatin content and Cd accumulation. A close relationship between the age of leaf tissue and response of the photosynthetic apparatus to Cd was shown. Cadmium (200 mumol/L) reduced photochemical processes more in older than younger leaf segments as seen in the Chl fluorescence parameters Fv/F0, and t1/2, while the chlorophyll fluorescence decrease ratio (Rfd) was inhibited more strongly in younger ones. Fv/Fm was slightly affected. Cd-induced enhancement of GSH content was correlated with higher phytochelatin accumulation to a greater extent in younger than in older leaf segments. Phytochelatin level corresponded to changes of photochemical processes in older leaves. The peptide thiol:Cd molar ratio for the phytochelatins varied depending on Cd concentration and age of leaf segments. The protective role of phytochelatins for the photosynthetic apparatus is discussed.  相似文献   
7.
8.
9.
The effect of cadmium on growth parameters of seedlings of maize, rye and wheat as well as the role of phytochelatins in Cd detoxication in these species were studied. Cadmium was found to inhibit root growth and decrease fresh weight and water content in roots and shoots of the studied plants. Although a considerably lower Cd accumulation was shown in maize seedlings than in other species, they were characterized by the highest sensitivity to cadmium. Among γ-Glu-Cys peptides synthetized by plant species, phytochelatins — glutathione derivatives predominated. In maize they were synthetized in amounts sufficient for binding the total pool of the metal taken up, and the detoxication mechanism was localized in their roots. Larger amounts of cadmium were accumulated in roots of wheat and rye, but the quantity of the formed γ-Glu-Cys peptides seems insufficient for detoxication of the metal.  相似文献   
10.
Copper, Cd and Zn can be found at elevated concentrations in contaminated estuarine and coastal waters and have potential toxic effects on phytoplankton species. In this study, the effects of these metals on the intracellular production of the polypeptides phytochelatin and glutathione by the marine diatom Phaeodactylum tricornutum were examined in laboratory cultures. Single additions of Cu and Cd (0.4 μM Cu2 and 0.45 μM Cd2+) to the culture medium induced the production of short-chained phytochelatins ((γ-Glu-Cys)n-Gly where n = 2–5), whereas a single addition of Zn (2.2 μM Zn2+) did not stimulate phytochelatin production. Combination of Zn with Cu resulted in a similar phytochelatin production compared with a single Cu addition. The simultaneous exposure to Zn and Cd led to an antagonistic effect on phytochelatin production, which was probably caused by metal competition for cellular binding sites. Glutathione concentrations were affected only upon exposure to Cd (85% increase) or the combination of Cd with Zn (65% decrease), relative to the control experiment. Ratios of phytochelatins to glutathione indicated a pronounced metal stress in response to exposures to Cu or Cd combined with Zn. This study indicates that variabilities in phytochelatin and glutathione production in the field can be explained in part by metal competition for cellular binding sites.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号