首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
  2016年   1篇
  2014年   1篇
排序方式: 共有2条查询结果,搜索用时 0 毫秒
1
1.
The potentials of Adansonia digitata root powders (ADRP) for adsorption of Pb2+, Cd2+ and Cu2+ from aqueous solutions was investigated. Physico-chemical analysis of the adsorbent (ADRP) shows that hydroxyl, carbonyl and amino groups were predominant on the surface of the adsorbent. Scanning Electron Microscope (SEM) image revealed its high porosity and irregular pores in the adsorbent while the Energy Dispersive X-ray Spectrum showed the major element with 53.0% Nitrogen, 23.8% carbon, 9.1% calcium, 7.5% potassium and 6.6% magnesium present. The found optimal conditions were: initial concentration of the metal ions = 0.5 mg/L, pH = 5, contact time = 90 min, adsorbent dose = 0.4 g and particle size = 32 µm. Freundlich isotherm showed good fit for the adsorption of Pb2+, Cd2+ and Cu2+. Dubinin-Radushkevich isotherm revealed that the adsorption processes were physisorption Cd(II) and Cu(II) but chemisorption with respect to Pb(II) ions. The kinetics and thermodynamic studies showed that Pseudo-second order and chemisorptions provided the best fit to the experimental data of Pb (II) ions only. Batch desorption result show that desorption in the acidic media for the metal ions were more rapid and over 90% of the metal ions were recovered from the biomass.  相似文献   
2.
The adsorptive and diffusive behaviour of methane and carbon dioxide in amorphous nanoporous adsorbents composed of spherosilicate building blocks, in which isolated metal sites have been distributed, is examined. The adsorbent contains cubic silicate building blocks (spherosilicate units: Si8O20), which are cross linked by SiCl2O2 bridges and decorated with either –OTiCl3 or –OSiMe3 groups of the other cube corners. The model structures were generated to correspond to experimentally synthesised materials, matching physical properties including density, surface area and accessible volume. It is shown that both methane and carbon dioxide adsorb via physisorption only in the modelled materials. Adsorption isotherms and energies at 300 K for pressures up to 100 bar were generated via molecular simulation. The maximum gravimetric capacity of CH4 is 16.9 wt%, occurring at 300 K and 97 bar. The maximum gravimetric capacity of CO2 is 50.3 wt%, occurring at 300 K and 51.6 bar. The best performing adsorbent was a low-density (high accessible volume) material with no –OTiCl3 groups. The presence of –OTiCl3 did not enhance physisorption even on a volumetric basis, and the high molecular weight of –OTiCl3 groups is a significant penalty on a gravimetric basis. Based on the pair correlation functions, the most favourable adsorption sites for both adsorbates are located in front of the faces of spherosilicate cubes. The self-diffusivity and activation energy for diffusion are also reported.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号