首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5505篇
  免费   732篇
  国内免费   608篇
  2024年   15篇
  2023年   200篇
  2022年   130篇
  2021年   203篇
  2020年   287篇
  2019年   285篇
  2018年   233篇
  2017年   267篇
  2016年   287篇
  2015年   290篇
  2014年   306篇
  2013年   376篇
  2012年   318篇
  2011年   252篇
  2010年   230篇
  2009年   276篇
  2008年   292篇
  2007年   332篇
  2006年   231篇
  2005年   202篇
  2004年   196篇
  2003年   185篇
  2002年   148篇
  2001年   150篇
  2000年   144篇
  1999年   128篇
  1998年   80篇
  1997年   82篇
  1996年   91篇
  1995年   55篇
  1994年   62篇
  1993年   52篇
  1992年   50篇
  1991年   52篇
  1990年   32篇
  1989年   32篇
  1988年   32篇
  1987年   31篇
  1986年   25篇
  1985年   27篇
  1984年   27篇
  1983年   18篇
  1982年   16篇
  1981年   17篇
  1980年   27篇
  1979年   16篇
  1978年   15篇
  1977年   8篇
  1973年   9篇
  1971年   9篇
排序方式: 共有6845条查询结果,搜索用时 15 毫秒
1.
  1. Assemblages of insect herbivores are structured by plant traits such as nutrient content, secondary metabolites, physical traits, and phenology. Many of these traits are phylogenetically conserved, implying a decrease in trait similarity with increasing phylogenetic distance of the host plant taxa. Thus, a metric of phylogenetic distances and relationships can be considered a proxy for phylogenetically conserved plant traits and used to predict variation in herbivorous insect assemblages among co‐occurring plant species.
  2. Using a Holarctic dataset of exposed‐feeding and shelter‐building caterpillars, we aimed at showing how phylogenetic relationships among host plants explain compositional changes and characteristics of herbivore assemblages.
  3. Our plant–caterpillar network data derived from plot‐based samplings at three different continents included >28,000 individual caterpillar–plant interactions. We tested whether increasing phylogenetic distance of the host plants leads to a decrease in caterpillar assemblage overlap. We further investigated to what degree phylogenetic isolation of a host tree species within the local community explains abundance, density, richness, and mean specialization of its associated caterpillar assemblage.
  4. The overlap of caterpillar assemblages decreased with increasing phylogenetic distance among the host tree species. Phylogenetic isolation of a host plant within the local plant community was correlated with lower richness and mean specialization of the associated caterpillar assemblages. Phylogenetic isolation had no effect on caterpillar abundance or density. The effects of plant phylogeny were consistent across exposed‐feeding and shelter‐building caterpillars.
  5. Our study reveals that distance metrics obtained from host plant phylogeny are useful predictors to explain compositional turnover among hosts and host‐specific variations in richness and mean specialization of associated insect herbivore assemblages in temperate broadleaf forests. As phylogenetic information of plant communities is becoming increasingly available, further large‐scale studies are needed to investigate to what degree plant phylogeny structures herbivore assemblages in other biomes and ecosystems.
  相似文献   
2.
Characterizing the architecture of bipartite networks is increasingly used as a framework to study biotic interactions within their ecological context and to assess the extent to which evolutionary constraint shape them. Orchid mycorrhizal symbioses are particularly interesting as they are viewed as more beneficial for plants than for fungi, a situation expected to result in an asymmetry of biological constraint. This study addressed the architecture and phylogenetic constraint in these associations in tropical context. We identified a bipartite network including 73 orchid species and 95 taxonomic units of mycorrhizal fungi across the natural habitats of Reunion Island. Unlike some recent evidence for nestedness in mycorrhizal symbioses, we found a highly modular architecture that largely reflected an ecological barrier between epiphytic and terrestrial subnetworks. By testing for phylogenetic signal, the overall signal was stronger for both partners in the epiphytic subnetwork. Moreover, in the subnetwork of epiphytic angraecoid orchids, the signal in orchid phylogeny was stronger than the signal in fungal phylogeny. Epiphytic associations are therefore more conservative and may co‐evolve more than terrestrial ones. We suggest that such tighter phylogenetic specialization may have been driven by stressful life conditions in the epiphytic niches. In addition to paralleling recent insights into mycorrhizal networks, this study furthermore provides support for epiphytism as a major factor affecting ecological assemblage and evolutionary constraint in tropical mycorrhizal symbioses.  相似文献   
3.
  1. The growing pace of environmental change has increased the need for large‐scale monitoring of biodiversity. Declining intraspecific genetic variation is likely a critical factor in biodiversity loss, but is especially difficult to monitor: assessments of genetic variation are commonly based on measuring allele pools, which requires sampling of individuals and extensive sample processing, limiting spatial coverage. Alternatively, imaging spectroscopy data from remote platforms may hold the potential to reveal genetic structure of populations. In this study, we investigated how differences detected in an airborne imaging spectroscopy time series correspond to genetic variation within a population of Fagus sylvatica under natural conditions.
  2. We used multi‐annual APEX (Airborne Prism Experiment) imaging spectrometer data from a temperate forest located in the Swiss midlands (Laegern, 47°28'N, 8°21'E), along with microsatellite data from F. sylvatica individuals collected at the site. We identified variation in foliar reflectance independent of annual and seasonal changes which we hypothesize is more likely to correspond to stable genetic differences. We established a direct connection between the spectroscopy and genetics data by using partial least squares (PLS) regression to predict the probability of belonging to a genetic cluster from spectral data.
  3. We achieved the best genetic structure prediction by using derivatives of reflectance and a subset of wavebands rather than full‐analyzed spectra. Our model indicates that spectral regions related to leaf water content, phenols, pigments, and wax composition contribute most to the ability of this approach to predict genetic structure of F. sylvatica population in natural conditions.
  4. This study advances the use of airborne imaging spectroscopy to assess tree genetic diversity at canopy level under natural conditions, which could overcome current spatiotemporal limitations on monitoring, understanding, and preventing genetic biodiversity loss imposed by requirements for extensive in situ sampling.
  相似文献   
4.
Big, beautiful organisms are useful for biological education, increasing evolution literacy, and biodiversity conservation. But if educators gloss over the ubiquity of streamlined and miniaturized organisms, they unwittingly leave students and the public vulnerable to the idea that the primary evolutionary plot of every metazoan lineage is “progressive” and "favors" complexity. We show that simple, small, and intriguingly repulsive invertebrate animals provide a counterpoint to misconceptions about evolution. Our examples can be immediately deployed in biology courses and outreach. This context emphasizes that chordates are not the pinnacle of evolution. Rather, in the evolution of animals, miniaturization, trait loss, and lack of perfection are at least as frequent as their opposites. Teaching about invertebrate animals in a “tree thinking” context uproots evolution misconceptions (for students and the public alike), provides a mental scaffold for understanding all animals, and helps to cultivate future ambassadors and experts on these little‐known, weird, and fascinating taxa.  相似文献   
5.
Semiparametric Regression in Size-Biased Sampling   总被引:1,自引:0,他引:1  
Ying Qing Chen 《Biometrics》2010,66(1):149-158
Summary .  Size-biased sampling arises when a positive-valued outcome variable is sampled with selection probability proportional to its size. In this article, we propose a semiparametric linear regression model to analyze size-biased outcomes. In our proposed model, the regression parameters of covariates are of major interest, while the distribution of random errors is unspecified. Under the proposed model, we discover that regression parameters are invariant regardless of size-biased sampling. Following this invariance property, we develop a simple estimation procedure for inferences. Our proposed methods are evaluated in simulation studies and applied to two real data analyses.  相似文献   
6.
The odds ratio is known to closely approximate the relative risk when the disease is rare. Logistic regression models are often used to estimate such odds ratios, but here a different model is used which avoids the assumptions implicit in logistic modelling; it also has the advantage of providing a test of homogeneity for odds rat os in situations where the logistic model cannot.  相似文献   
7.
8.
Rickettsia parkeri, a member of the spotted fever group rickettsias, was first described in 1939 and was thought to be non‐pathogenic until recently, when it was found to cause a spotted fever‐like illness in humans and areas of necrosis (eschars) at the sites of tick bites. Accordingly, there is currently much interest in this emerging pathogen. In this study, all published articles concerning R. parkeri were reviewed and analyzed for evidence of relatedness among this agent and other spotted fever group (SFG) rickettsiae which also produce similar clinical syndromes and/or eschars, including R. conorii, R. africae, and R. sibirica. A synthesis of the historical (antigenic) and recent (molecular) data supporting a phylogenetic sub‐grouping of these SFG organisms is presented and comments are offered about the taxonomy of rickettsial organisms in general, and R. parkeri in particular.  相似文献   
9.
In order to map quantitative trait loci (QTLs) for allometries of body compositions and metabolic traits in chicken, we phenotypically characterize the allometric growths of multiple body components and metabolic traits relative to BWs using joint allometric scaling models and then establish random regression models (RRMs) to fit genetic effects of markers and minor polygenes derived from the pedigree on the allometric scalings. Prior to statistically inferring the QTLs for the allometric scalings by solving the RRMs, the LASSO technique is adopted to rapidly shrink most of marker genetic effects to zero. Computer simulation analysis confirms the reliability and adaptability of the so-called LASSO-RRM mapping method. In the F2 population constructed by multiple families, we formulate two joint allometric scaling models of body compositions and metabolic traits, in which six of nine body compositions are tested as significant, while six of eight metabolic traits are as significant. For body compositions, a total of 14 QTLs, of which 9 dominant, were detected to be associated with the allometric scalings of drumstick, fat, heart, shank, liver and spleen to BWs; while for metabolic traits, a total of 19 QTLs also including 9 dominant be responsible for the allometries of T4, IGFI, IGFII, GLC, INS, IGR to BWs. The detectable QTLs or highly linked markers can be used to regulate relative growths of the body components and metabolic traits to BWs in marker-assisted breeding of chickens.  相似文献   
10.
Aim To describe a protocol for incorporating a temporal dimension into historical biogeographical analysis, while maintaining the essential independence of all datasets, involving the generation of general area cladograms. Location Global. Methods General area cladograms (GACs) are a reconstruction of the evolutionary history of a set of areas and unrelated clades within those areas. Nodes on a GAC correspond to speciation events in a group of taxa; general nodes are those at which multiple unrelated clades speciate. We undertake temporal calibration of GACs using molecular clock estimates of splitting events between extant taxa as well as first appearance data from the fossil record. We present two examples based on re‐analysis of previously published data: first, a temporally calibrated GAC generated from secondary Brooks parsimony analysis (BPA) of six extant bird clades from the south‐west of North America using molecular clock estimates of divergence times; and second, an analysis of African Neogene mammals based on a phylogenetic analysis for comparing trees (PACT) analysis. Results A hypothetical example demonstrates how temporal calibration reveals potentially critical information about the timing of both unique and general events, while also illustrating instances of incongruence between dates generated from molecular clock estimates and fossils. For the African Neogene mammal dataset, our analysis reveals that most mammal clades underwent geodispersal associated with the Neogene climatic optimum (c. 16 Ma) and vicariant speciation in central Africa correlated with increased aridity and cooler temperatures around 2.5 Ma. Main conclusions Temporally calibrated GACs are valuable tools for assessing whether coordinated patterns of speciation are associated with large‐scale climatic or tectonic phenomena.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号