首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   19篇
  免费   0篇
  2017年   1篇
  2014年   3篇
  2013年   2篇
  2011年   2篇
  2010年   1篇
  2008年   1篇
  2007年   1篇
  2005年   1篇
  2000年   1篇
  1997年   1篇
  1993年   1篇
  1988年   1篇
  1983年   1篇
  1978年   1篇
  1976年   1篇
排序方式: 共有19条查询结果,搜索用时 15 毫秒
1.

A monoclonal antibody (DEM-1) specific for the Dewar photoproduct is used for detection and quantification of photolesions in DNA. To help understand the molecular recognition of damaged DNA by the antibody protein, we have cloned and sequenced the variable region genes of DEM-1. We have also prepared Fab fragments of DEM-1 (DEM1Fab), and synthesized two kinds of 3′-biotinylated oligonucleotides of different lengths containing a central Dewar photoproduct of TpT to analyze the effects of the antigen size on the binding rates by means of surface plasmon resonance (SPR). Results obtained from SPR analyses suggest that DEM1Fab may recognize tetranucleotide unit as the epitope.  相似文献   
2.
An efficient and selective method was developed for the deprotection of triethylsilyl (TES) ethers using formic acid in methanol (5–10%) or in methylene chloride 2–5%) with excellent yields. TES ethers are selectively deprotected to the corresponding alcohols in high yields using formic acid in methanol under mild reaction conditions. Other hydroxyl protecting groups like t-butyldimethylsilyl (TBDMS) remain unaffected.  相似文献   
3.
Fahmi Himo 《BBA》2005,1707(1):24-33
Quantum chemical methods are today a viable tool in the study of enzyme catalysis. The development of new density functional techniques and the enormous advancement in computer power have made it possible to accurately describe active sites of enzymes. This review gives a brief account of the methods and models used in this field. Three specific enzymes are discussed: pyruvate-formate lyase (PFL), spore photoproduct lyase (SPL), and benzylsuccinate synthase (BSS). What these enzymes have in common is that they use radical chemistry to catalyze C-C bond formation or cleavage reactions.  相似文献   
4.
Cockayne syndrome (CS) is a debilitating and complex disorder that results from inherited mutations in the CS complementation genes A and B, CSA and CSB. The links between the molecular functions of the CS genes and the complex pathophysiology of CS are as of yet poorly understood and are the subject of intense debate. While mouse models reflect the complexity of CS, studies on simpler genetic models might shed new light on the consequences of CS mutations. Here we describe a functional homolog of the human CSA gene in Caenorhabditis elegans. Similar to its human counterpart, mutations in the nematode csa-1 gene lead to developmental growth defects as a consequence of DNA lesions.  相似文献   
5.
6.
Nucleotide excision repair (NER) is a very important defense system against various types of DNA damage, and it is necessary for maintaining genomic stability. The molecular mechanism of NER has been studied in considerable detail, and it has been shown that proper protein-protein interactions among NER factors are critical for efficient repair. A structure-specific endonuclease, XPF-ERCC1, which makes the 5′ incision in NER, was shown to interact with a single-stranded DNA binding protein, RPA. However, the biological significance of this interaction was not studied in detail. We used the yeast two-hybrid assay to determine that XPF interacts with the p70 subunit of RPA. To further examine the role of this XPF-p70 interaction, we isolated a p70-interaction-deficient mutant form of XPF that contains a single amino acid substitution in the N-terminus of XPF by the reverse yeast two-hybrid assay using randomly mutagenized XPF. The biochemical properties of this RPA-interaction-deficient mutant XPF-ERCC1 are very similar to those of wild-type XPF-ERCC1 in vitro. Interestingly, expression of this mutated form of XPF in the XPF-deficient Chinese hamster ovary cell line, UV41, only partially restores NER activity and UV resistance in vivo compared to wild-type XPF. We discovered that the RPA-interaction-deficient XPF is not localized in nuclei and the mislocalization of XPF-ERCC1 prevents the complex from functioning in NER.  相似文献   
7.
DNA repair enzymes typically recognize their substrate lesions with high affinity to ensure efficient lesion repair. In UV irradiated endospores, a special thymine dimer, 5-thyminyl-5,6-dihydrothymine, termed the spore photoproduct (SP), is the dominant DNA photolesion, which is rapidly repaired during spore outgrowth mainly by spore photoproduct lyase (SPL) using an unprecedented protein-harbored radical transfer process. Surprisingly, our in vitro studies using SP-containing short oligonucleotides, pUC 18 plasmid DNA, and E. coli genomic DNA found that they are all poor substrates for SPL in general, exhibiting turnover numbers of 0.01–0.2 min−1. The faster turnover numbers are reached under single turnover conditions, and SPL activity is low with oligonucleotide substrates at higher concentrations. Moreover, SP-containing oligonucleotides do not go past one turnover. In contrast, the dinucleotide SP TpT exhibits a turnover number of 0.3–0.4 min−1, and the reaction may reach up to 10 turnovers. These observations distinguish SPL from other specialized DNA repair enzymes. To the best of our knowledge, SPL represents an unprecedented example of a major DNA repair enzyme that cannot effectively repair its substrate lesion within the normal DNA conformation adopted in growing cells. Factors such as other DNA binding proteins, helicases or an altered DNA conformation may cooperate with SPL to enable efficient SP repair in germinating spores. Therefore, both SP formation and SP repair are likely to be tightly controlled by the unique cellular environment in dormant and outgrowing spore-forming bacteria, and thus SP repair may be extremely slow in non-spore-forming organisms.  相似文献   
8.
UV-induced photoproduct formation has been compared in non-isolated and isolated developing forespores. We have found that levels of spore type photoproducts are greatly affected by mother cell DNA. We have also observed the presence of the photoproduct 6-4′-(pyrimidin-2′-one)-thymine in developing forespores. We conclude from these and other data in the literature that the degree of hydration around the forespore DNA is reduced by the presence of dipicolinic acid which influences photoproduct formation without causing a change in conformational state.  相似文献   
9.
Summary A major cause of tissue culture medium deterioration is exposure to room fluorescent light. Riboflavin and tryptophan present in Dulbecco's modified Eagle's minimum essential medium, when exposed to light, yield toxic photoproducts responsible for loss of the ability of the medium to support clonal growth of human, mouse and Chinese hamster cell lines. Procedures for minimizing medium deterioration are discussed. This work was supported by American Cancer Society Research Grant No. VC-100B and US PHS Research Career Development Award No. 5 K04 GM70537 from the National Institute of General Medical Sciences.  相似文献   
10.
Summary Hydrogen peroxide, lethal for human cells, is produced in Dulbecco's modified Eagle's tissue culture medium when exposed to “daylight” fluorescent light. Addition of pure H2O2 and use of the enzyme catalase demonstrate that about 40% of the toxicity in irradiated medium is due to generated peroxide. Riboflavin and tryptophan, or riboflavin and tyrosine, are the components necessary for formation of lethal levels of H2O2 during light exposure. Supported by an American Cancer Society Research Grant and a Public Health Service Research Career Development Award to Richard J. Wang.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号