首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   13篇
  2020年   1篇
  2018年   1篇
  2017年   3篇
  2016年   1篇
  2015年   1篇
  2014年   7篇
  2013年   1篇
  2012年   1篇
  2011年   1篇
  2003年   1篇
排序方式: 共有18条查询结果,搜索用时 31 毫秒
1.
TiO2 hollow nanowires (HNWs) and nanoparticles (NPs) constitute promising architectures for QDs sensitized photoanodes for H2 generation. We sensitize these structures with CdS/CdSe quantum dots by two different methods (chemical bath deposition, CBD and succesive ionic layer adsorption and reaction, SILAR) and evaluate the performance of these photoelectrodes. Remarkable photocurrents of 4 mA·cm and 8 mA·cm?2 and hydrogen generation rates of 40 ml·cm?2·day?1 and 80 ml·cm?2·day?1 have been obtained in a three electrode configuration with sacrificial hole scavengers (Na2S and Na2SO3), for HNWs and NPs respectively, which is confirmed through gas analysis. More importantly, autonomous generation of H2 (20 ml·cm?2·day?1 corresponding to 2 mA·cm?2 photocurrent) is obtained in a two electrode configuration at short circuit under 100 mW·cm?2 illumination, clearly showing that these photoanodes can produce hydrogen without the assistance of any external bias. To the best of the authors' knowledge, this is the highest unbiased solar H2 generation rate reported for these of QDs based heterostructures. Impedance spectroscopy measurements show similar electron density of trap states below the TiO2 conduction band while the recombination resistance was higher for HNWs, consistently with the much lower surface area compared to NPs. However, the conductivity of both structures is similar, in spite of the one dimensional character of HNWs, which leaves some room for improvement of these nanowired structures. The effect of the QDs deposition method is also evaluated. Both structures show remarkable stability without any appreciable photocurrent loss after 0.5 hour of operation. The findings of this study constitute a relevant step towards the feasibility of hydrogen generation with wide bandgap semiconductors/quantum dots based heterostructures.  相似文献   
2.
A hybrid heterojunction and solid‐state photoelectrochemical solar cell based on graphene woven fabrics (GWFs) and silicon is designed and fabricated. The GWFs are transferred onto n‐Si to form a Schottky junction with an embedded polyvinyl alcohol based solid electrolyte. In the hybrid solar cell, solid electrolyte serves three purposes simutaneously; it is an anti‐reflection layer, a chemical modification carrier, and a photoelectrochemical channel. The open‐circuit voltage, short‐circuit current density, and fill factor are all significantly improved, achieving an impressive power conversion efficiency of 11%. Solar cell models are constructed to confirm the hybrid working mechanism, with the heterojunction junction and photoelectrochemical effect functioning synergistically.  相似文献   
3.
Photoelectrodes without a p–n junction are often limited in efficiency by charge recombination at semiconductor surfaces and slow charge transfer to electrocatalysts. This study reports that tin oxide (SnOx) layers applied to n‐Si wafers after forming a thin chemically oxidized SiOx layer can passivate the Si surface while producing ≈620 mV photovoltage under 100 mW cm?2 of simulated sunlight. The SnOx layer makes ohmic contacts to Ni, Ir, or Pt films that act as precatalysts for the oxygen‐evolution reaction (OER) in 1.0 m KOH(aq) or 1.0 m H2SO4(aq). Ideal regenerative solar‐to‐O2(g) efficiencies of 4.1% and 3.7%, respectively, are obtained in 1.0 m KOH(aq) with Ni or in 1.0 m H2SO4(aq) with Pt/IrOx layers as OER catalysts. Stable photocurrents for >100 h are obtained for electrodes with patterned catalyst layers in both 1.0 m KOH(aq) and 1.0 m H2SO4(aq).  相似文献   
4.
5.
Natural pyrite (FeS2) has frequently been discussed as a material involved in CO2 fixation in presence of H2S and as a possible catalyst for the origin of life. A straightforward chemical fixation of carbon dioxide as proposed by Wächtershäuser could not be verified from thermo-chemical equilibrium calculations by minimizing Gibb's Free Energy in the system C, O, H, S, Fe and appears unlikely dueto the experimentally encountered large overpotentials involved in CO2 fixation. However, the hypothesis, by W. R. Edwards, that pyrite in shallow coastal waters may have been involved, canbe sustained. In this case, daily available photoelectrochemical power from FeS2/Fe2+/3+ interfaces could have made thedifference in combination with electrochemical processes, such ashydrogen insertion, and the solubilization of pyrite by the aminoacid cysteine to yield dissolved chemical energy. Periodical changes in energy supply could also have entrained primitive self-organization processes for organic-biological evolution.Natural samples from thirteen ore deposits have been investigatedphotoelectrochemically. Efficient light-induced current generation has been found with several of these samples so thatphotoelectrochemical processes generated by pyrite have to be considered as naturally occurring phenomena, which could have been even more pronounced in oxygen deficient environments. Pyrite from the Murgul mine in Turkey of suboceanic volcanicorigin was closer examined as a model system to understand the morphology and chemistry of pyrite photoactivity.  相似文献   
6.
Artificial all‐surface‐atomic 2D sheets can trigger breakthroughs in tailoring the physical and chemical properties of advanced functional materials. Here, the conceptually new all‐surface‐atomic semiconductors of SnS and SnSe freestanding sheets are realized using a scalable strategy. As an example, all‐surface‐atomic SnS sheets undergo surface atomic elongation and structural disordering, which is revealed by X‐ray absorption fine structure spectroscopy and first‐principles calculations, endowing them with high structural stability and an increased density of states at the valence band edge. These exotic atomic and electronic structures make the all‐surface‐atomic SnS sheet‐based photoelectrode exhibit an incident photon‐to‐current conversion efficiency of 67.1% at 490 nm, much higher than the efficiencies of other visible‐light‐driven water splitting. A photocurrent density of 5.27 mA cm‐2, which is two orders of magnitude higher than that of the bulk counterpart, is also achieved for the all‐surface‐atomic SnS sheets‐based photoelectrode. This will allow the manipulation of the basic properties of advanced materials on the atomic scale, thus paving the way for innovative applications.  相似文献   
7.
Two main requirements must be fulfilled in order to construct an efficient TiO2‐based photo‐electrochemical water splitting cell. One is the expansion of the cell's spectral response, usually by the attachment of a sensitizing dye monolayer on the surface of the TiO2. The second involves the incorporation of a water oxidation catalyst that reduces the overpotential for the oxygen evolution reaction. These requirements are often achieved by the co‐adsorption of both the dye and the catalyst on the TiO2, or by a covalent attachment of the catalyst to the dye molecule. Here, the possibility to use a single material that acts as a sensitizer and a catalyst is presented. The use of a catechol molecule to form a type II charge transfer complex with TiO2 widens the absorption of the system into the visible region. The TiO2‐catechol complex is highly catalytic toward the oxidation of water to oxygen, reducing the electrocatalytic reaction overpotential by 500 mV compared to bare TiO2. A suggested catalytic mechanism for the water oxidation reaction is described. This methodology opens a new path for type II charge transfer complexes to be utilized as catalysts/light absorbers in water splitting systems based on TiO2 or other metal oxides.  相似文献   
8.
9.
10.
The straightforward and inexpensive fabrication of stabilized and activated photoelectrodes for application to tandem photoelectrochemical (PEC) water splitting is reported. Semiconductors such as Si, WO3, and BiVO4 can be coated with a composite layer formed upon hydrolytic decomposition of hetero­bimetallic single source precursors (SSPs) based on Ti and Ni, or Ti and Co in a simple single‐step process under ambient conditions. The resulting 3d‐transition metal oxide composite films are multifunctional, as they protect the semiconductor electrode from corrosion with an amorphous TiO2 coating and act as bifunctional electrocatalysts for H2 and O2 evolution based on catalytic Ni or Co species. Thus, this approach enables the use of the same precursors for both photoelectrodes in tandem PEC water splitting, and SSP chemistry is thereby established as a highly versatile low‐cost approach to protect and activate photoelectrodes. In an optimized system, SSP coating of a Si photocathode and a BiVO4 photoanode resulted in a benchmark noble metal‐free dual‐photoelectrode tandem PEC cell for overall solar water splitting with an applied bias solar‐to‐hydrogen conversion efficiency of 0.59% and a half‐life photostability of 5 h.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号