首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   49篇
  免费   2篇
  国内免费   5篇
  2022年   1篇
  2021年   2篇
  2020年   1篇
  2016年   1篇
  2015年   3篇
  2013年   3篇
  2012年   1篇
  2011年   2篇
  2010年   4篇
  2009年   1篇
  2008年   1篇
  2007年   3篇
  2006年   1篇
  2005年   2篇
  2004年   2篇
  2003年   5篇
  2002年   2篇
  2001年   1篇
  2000年   2篇
  1999年   2篇
  1998年   5篇
  1997年   1篇
  1996年   1篇
  1995年   4篇
  1993年   1篇
  1991年   1篇
  1987年   1篇
  1976年   1篇
  1973年   1篇
排序方式: 共有56条查询结果,搜索用时 109 毫秒
1.
Over the past several years, the use of synthetic oligonucleotides and functional analogs thereof as a possibly general means of controlling genetic expression has received widespread attention. Following a brief overview of some of the basic principles and strategies for this approach, attention is focused here on summarizing some recent reports of in vitro and, in particular, in vivo investigations in various animal models using phosphorothioate analogs of 2′-deoxyoligo-nucleotides. In view of these findings, which include studies related to neurobiology, this field should find significant utility in applications of the antisense method for controlling genetic expression.  相似文献   
2.
Faithful replication of genomic DNA by high-fidelity DNA polymerases is crucial for the survival of most living organisms. While high-fidelity DNA polymerases favor canonical base pairs over mismatches by a factor of ∼1 × 105, fidelity is further enhanced several orders of magnitude by a 3′–5′ proofreading exonuclease that selectively removes mispaired bases in the primer strand. Despite the importance of proofreading to maintaining genome stability, it remains much less studied than the fidelity mechanisms employed at the polymerase active site. Here we characterize the substrate specificity for the proofreading exonuclease of a high-fidelity DNA polymerase by investigating the proofreading kinetics on various DNA substrates. The contribution of the exonuclease to net fidelity is a function of the kinetic partitioning between extension and excision. We show that while proofreading of a terminal mismatch is efficient, proofreading a mismatch buried by one or two correct bases is even more efficient. Because the polymerase stalls after incorporation of a mismatch and after incorporation of one or two correct bases on top of a mismatch, the net contribution of the exonuclease is a function of multiple opportunities to correct mistakes. We also characterize the exonuclease stereospecificity using phosphorothioate-modified DNA, provide a homology model for the DNA primer strand in the exonuclease active site, and propose a dynamic structural model for the transfer of DNA from the polymerase to the exonuclease active site based on MD simulations.  相似文献   
3.
The SfiI endonuclease is a tetrameric protein with two DNA-binding clefts. It has to bind two copies of its recognition sequence, one at each cleft, before it cleaves DNA. While SfiI binds cooperatively to two cognate sites, it binds only one non-cognate DNA molecule at a time and the resultant complex is precluded from binding cognate DNA at the vacant cleft. To examine the communications between separate binding sites in a protein that synapses two segments of DNA, SfiI was tested with oligonucleotide duplexes containing its recognition sequence but with either R(p) or S(p) phosphorothioate linkages at the scissile bonds. Though SfiI has low activity on the R(p) and none against the S(p) diastereoisomer, it bound these duplexes in the same cooperative manner as oxyester duplexes, though with a reduced affinity for the S(p) derivative. It also formed complexes with one phosphorothioate-duplex and one oxyester-duplex but, when Mg(2+) was added to the hybrid complexes, the phosphorothioate moiety at one DNA-binding cleft prevented the enzyme from cleaving the oxyester duplex at the other cleft. SfiI is thus restrained from catalytic action until it recognises the correct nucleotide sequence at two DNA loci and the correct phosphodiester functions at both loci.  相似文献   
4.
Pistol RNAs are members of a distinct class of self-cleaving ribozymes that was recently discovered by using a bioinformatics search strategy. Several hundred pistol ribozymes share a consensus sequence including 10 highly conserved nucleotides and many other modestly conserved nucleotides associated with specific secondary structure features, including three base-paired stems and a pseudoknot. A representative pistol ribozyme from the bacterium Lysinibacillus sphaericus was found to promote RNA strand scission with a rate constant of ∼10 min−1 under physiological Mg2+ and pH conditions. The reaction proceeds via the nucleophilic attack of a 2′-oxygen atom on the adjacent phosphorus center, and thus adheres to the same general catalytic mechanism of internal phosphoester transfer as found with all other classes of natural self-cleaving ribozymes discovered to date. Analyses of the kinetic characteristics and the metal ion requirements of the cleavage reaction reveal that members of this ribozyme class likely use several catalytic strategies to promote the rapid cleavage of RNA.  相似文献   
5.
Unmethylated CpG dinucleotide (CpG motif) is involved in the exacerbation of DNA-associated autoimmune diseases. We investigated the effect of DNA containing 8-hydroxydeoxyguanosine (oxo-dG), a representative DNA biomarker for oxidative stress in the diseases, on CpG motif-dependent inflammatory responses. ODN1668 and ODN1720 were selected as CpG-DNA and non-CpG DNA, respectively. Deoxyguanosine in the CpG motif (G9) or outside the motif (G15) of ODN1668 was substituted with oxo-dG to obtain oxo(G9)-1668 and oxo(G15)-1668, respectively. Oxo(G15)-1668 induced a significantly higher amount of tumor necrosis factor (TNF)-α from RAW264.7 macrophage-like cells than ODN1668, whereas oxo(G9)-1668, oxo(G8)-1720, or oxo(G15)-1720 hardly did. CpG DNA-induced TNF-α production was significantly increased by addition of oxo(G8)-1720 or oxo(G15)-1720, but not of ODN1720. This oxo-dG-containing DNA-induced increase in TNF-α production was also observed in primary cultured macrophages isolated from wild-type mice, but not observed in those from Toll-like receptor (TLR)-9 knockout mice. In addition, TNF-α production by ligands for TLR3, TLR4, or TLR7 was not affected by oxo-dG-containing DNA. Then, the footpad swelling induced by subcutaneous injection of ODN1668 into mice was increased by coinjection with oxo(G8)-1720, but not with ODN1720. These results indicate that oxo-dG-containing DNA increases the CpG motif-dependent inflammatory responses, which would exacerbate DNA-related autoimmune diseases.  相似文献   
6.
7.
8.
9.
10.
In this review I will outline several chemogenetic approaches used to determine the chemical basis of large ribozyme function and structure. The term chemogenetics was first used to describe site-specific functional group modification experiments in the analysis of DNA–protein interactions. Within the past few years equivalent experiments have been performed on large catalytic RNAs using both single-site substitution and interference mapping techniques with nucleotide analogues. While functional group mutagenesis is an important aspect of a chemogenetic approach, chemical correlates to genetic revertants and suppressors must also be realized for the genetic analogy to be intellectually valid and experimentally useful. Several examples of functional group revertants and suppressors have now been obtained within the Tetrahymena group I ribozyme. These experiments define an ensemble of tertiary hydrogen bonds that have made it possible to construct a detailed model of the ribozyme catalytic core. The model includes a functionally important monovalent metal ion binding site, a wobble–wobble receptor motif for helix–helix packing interactions, and a minor groove triple helix. © 1998 John Wiley & Sons, Inc. Biopoly 48: 65–81, 1998  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号