首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   361篇
  免费   23篇
  国内免费   3篇
  387篇
  2023年   1篇
  2022年   12篇
  2021年   9篇
  2020年   10篇
  2019年   29篇
  2018年   12篇
  2017年   7篇
  2016年   6篇
  2015年   12篇
  2014年   17篇
  2013年   16篇
  2012年   24篇
  2011年   39篇
  2010年   14篇
  2009年   20篇
  2008年   17篇
  2007年   19篇
  2006年   15篇
  2005年   12篇
  2004年   7篇
  2003年   9篇
  2002年   7篇
  2001年   12篇
  2000年   8篇
  1999年   4篇
  1998年   4篇
  1997年   2篇
  1996年   2篇
  1995年   6篇
  1994年   6篇
  1993年   7篇
  1992年   4篇
  1991年   1篇
  1990年   3篇
  1989年   8篇
  1988年   2篇
  1987年   1篇
  1986年   1篇
  1985年   2篇
排序方式: 共有387条查询结果,搜索用时 0 毫秒
1.
Phorbol esters are known to alter microfilaments but it is not clear if the changes correspond to modulation of the phosphoinositide turnover/protein kinase C system. The novel technique of laser scanning confocal epifluorescence was used to study fiber orientation in phorbol ester treated cells. We treated endothelial cells with control agents and agents known to stimulate protein kinase C: 4 alpha-phorbol, phorbol 12-myristate 13-acetate (PMA), phorbol dibutyrate (PDB), or lipopolysaccharide. After incubation with the test agents, the endothelial cell microfilaments were stained with rhodamine pholloidin and viewed by conventional epifluorescence and by laser scanning confocal epifluorescence microscopy. The images obtained by the confocal microscopy corresponded to a thin optical section through the cells, 300 nm or more in thickness. The microfilaments extended predominantly in the plane of focus. After exposure of the cells to phorbol esters, the stress fibers became more nearly parallel in arrangement or were shortened, but remained in the plane of focus. The modification of microfilaments in response to phorbol esters was quantitated by a single blind analysis. In order to compare the morphological changes with a biochemical action of the phorbol esters, we measured phosphoinositide turnover. The dose-dependence of morphological changes was compared and contrasted to the dose-dependent effect of phorbol esters on bradykinin-stimulated phosphoinositide turnover. PMA had about the same EC50 (1-5 nM) for both biochemical and morphological processes. PDB was less potent in inducing the disruption of microfilament structure than in inhibiting phosphoinositide turnover. Lipopolysaccharide was ineffective in inducing a morphological change under these conditions. A simple activation of protein kinase C is insufficient to explain the dose-dependent effects of phorbol esters. Thus a morphometric analysis can help distinguish the potency of cytoskeleton modulators.  相似文献   
2.
The previous demonstration that incubation of brain slices with [32P]phosphate brings about rapid tabeling of phosphatidic acid in myelin suggests that the enzyme involved should be present in this specialized membrane. DAG kinase (ATP:1,2-diacyglycerol 3-phosphotransferase, E.C. 2.7.1.107) is present in rat brain homogenate at a specific activity of 2.5 nmol phosphatidic acid formed/min/mg protein, while highly purified myelin had a much lower specific activity (0.29 nmol/min/mg protein). Nevertheless, the enzyme appears to be intrinsic to this membrane since it can not be removed by washing with a variety of detergents or chelating agents, and it could not be accounted for as contamination by another subcellular fraction. Production of endogenous, membrane-associated, diacylglycerol (DAG) by PLC (phospholipase C) treatment brought about translocation from soluble to particulate fractions, including myelin. Another level of control of activity involves inactivation by phosphorylation; a 10 min incubation of brain homogenate with ATP resulted in a large decrease in DAG kinase activity in soluble, particulate and myelin fractions.  相似文献   
3.
Carbachol-, norepinephrine- and glutamate-stimulated phosphoinositide metabolism was investigated in the neonatal, young and adult cerebral cortex slices of rats prenatally treated with methylazoxymethanol (MAM) on gestational day 15 (GD15) or GD19. In rat offspring treated on GD15 there was a significant reduction in the accumulation of [3H]inositol phosphates induced by carbachol and a significant increase in the accumulation of [3H]inositol phosphates induced by norepinephrine on day 7, whereas no changes were observed at the other ages. No significant changes, on the other hand, were observed for glutamate-stimulated phosphoinositide metabolism in GD15 treated rats and for carbachol-, norepinephrine- and glutamate-stimulated phosphoinositide metabolism in animals treated on GD19 at any of the different ages evaluated. These results indicate that treatment with MAM on GD15, which results in a marked microencephaly, causes a marked alteration of muscarinic and 1-adrenergic receptor-stimulated phosphoinositide metabolism during brain development and that these alterations undergo adaptive changes in the adult brain.  相似文献   
4.
In the early stages of infection, gaining control of the cellular protein synthesis machinery including its ribosomes is the ultimate combat objective for a virus. To successfully replicate, viruses unequivocally need to usurp and redeploy this machinery for translation of their own mRNA. In response, the host triggers global shutdown of translation while paradoxically allowing swift synthesis of antiviral proteins as a strategy to limit collateral damage. This fundamental conflict at the level of translational control defines the outcome of infection. As part of this special issue on molecular mechanisms of early virus–host cell interactions, we review the current state of knowledge regarding translational control during viral infection with specific emphasis on protein kinase RNA-activated and mammalian target of rapamycin-mediated mechanisms. We also describe recent technological advances that will allow unprecedented insight into how viruses and host cells battle for ribosomes.  相似文献   
5.
We investigated the effects of vitamin D3 on the signaling pathways by prostaglandin E2 (PGE2) in osteoblast-like MC3T3-E1 cells. The pretreatment with 1,25-dihydroxyvitamin D3 (1,25-(OH)2D3), an active form of vitamin D3, significantly inhibited cAMP accumulation induced by 10 μM PGE2 in a dose-dependent manner in the range between 1 pM and 1 nM. This effect of 1,25-(OH)2D3 was dependent on the time of pretreatment up to 8 h. 1,25-(OH)2D3 also inhibited the cAMP accumulation induced by NaF, a GTP-binding protein activator, or forskolin which directly activates adenylate cyclase. On the other hand, 1,25-(OH)2D3 significantly inhibited PGE2-induced IP3 formation in a dose-dependent manner between 10 pM and 1 nM. However, 1,25-(OH)2D3 had little effect on NaF-induced IP3 formation. The pretreatment with 24,25-dihydroxyvitamin D3, an inactive form of vitamin D3, affected neither cAMP accumulation nor IP3 formation induced by PGE2. These results strongly suggest that 1,25-(OH)2D3 modulates the signaling by PGE2 in osteoblast-like cells as follows: the inhibitory effect on the cAMP production is exerted at a point downstream from adenylate cyclase and the inhibitory effect on the phosphoinositide hydrolysis is exerted at the point between the PGE2 receptor and GTP-binding protein, probably Gi2.  相似文献   
6.
The activities of the enantiomers of BM-5 were examined to measure muscarinic cholinergic selectivity in the central nervous system. Autoradiographic studies assessed the ability of each enantiomer to inhibit the binding of [3H]-(R)-quinuclidinyl benzilate ([3H]-(R)-QNB) to muscarinic receptors in the rat brain. (+)-(R)-BM-5 inhibited [3H]-(R)-QNB binding to rat brain sections at concentrations below 1.0 microM, while 100-fold higher concentrations of (-)-(S)-BM-5 were required for comparable levels of inhibition. Analysis of the autoradiograms indicated that both stereoisomers had a similar distribution of high affinity binding sites. Each enantiomer displayed higher affinity for muscarinic receptors in the superior colliculi and lower affinity for receptors in the cerebral cortex and hippocampus. (+)-(R)-BM-5 and oxotremorine inhibited adenylyl cyclase activity in the cerebral cortex with efficacies comparable to that for acetylcholine. (+)-(R)-BM-5 was 26-fold more potent than (-)-(S)-BM-5 in inhibiting adenylyl cyclase. Oxotremorine-M and carbamylcholine stimulated phosphoinositide turnover in the cerebral cortex. Oxotremorine had lower activity and (+)-(R)-BM-5 was essentially inactive at comparable concentrations. The difference in activity of the two enantiomers indicates a remarkable stereochemical selectivity for muscarinic receptors. The stereoselectivity index is comparable for both the autoradiographic assays (48) and measures of adenylyl cyclase activity (26) in the cerebral cortex.  相似文献   
7.
Phosphatidylinositol-3-kinases (PI3Ks) are lipid kinases that phosphorylate phosphatidylinositol 4,5-bisphosphate to generate a key lipid second messenger, phosphatidylinositol 3,4,5-bisphosphate. PI3Kα and PI3Kγ require activation by RAS proteins to stimulate signaling pathways that control cellular growth, differentiation, motility and survival. Intriguingly, RAS binding to PI3K isoforms likely differ, as RAS mutations have been identified that discriminate between PI3Kα and PI3Kγ, consistent with low sequence homology (23%) between their RAS binding domains (RBDs). As disruption of the RAS/PI3Kα interaction reduces tumor growth in mice with RAS- and epidermal growth factor receptor driven skin and lung cancers, compounds that interfere with this key interaction may prove useful as anti-cancer agents. However, a structure of PI3Kα bound to RAS is lacking, limiting drug discovery efforts. Expression of full-length PI3K isoforms in insect cells has resulted in low yield and variable activity, limiting biophysical and structural studies of RAS/PI3K interactions. This led us to generate the first RBDs from PI3Kα and PI3Kγ that can be expressed at high yield in bacteria and bind to RAS with similar affinity to full-length PI3K. We also solved a 2.31 Å X-ray crystal structure of the PI3Kα-RBD, which aligns well to full-length PI3Kα. Structural differences between the PI3Kα and PI3Kγ RBDs are consistent with differences in thermal stability and may underly differential RAS recognition and RAS-mediated PI3K activation. These high expression, functional PI3K RBDs will aid in interrogating RAS interactions and could aid in identifying inhibitors of this key interaction.  相似文献   
8.
Phosphatidic acid (PA) and phosphoinositides are metabolically interconverted lipid second messengers that have central roles in many growth factor (GF)‐stimulated signalling pathways. Yet, little is known about the mechanisms that coordinate their production and downstream signalling. Here we show that the phosphatidylinositol (PI)‐transfer protein Nir2 translocates from the Golgi complex to the plasma membrane in response to GF stimulation. This translocation is triggered by PA formation and is mediated by its C‐terminal region that binds PA in vitro. We further show that depletion of Nir2 substantially reduces the PI(4,5)P2 levels at the plasma membrane and concomitantly GF‐stimulated PI(3,4,5)P3 production. Finally, we show that Nir2 positively regulates the MAPK and PI3K/AKT pathways. We propose that Nir2 through its PA‐binding capability and PI‐transfer activity can couple PA to phosphoinositide signalling, and possibly coordinates their local lipid metabolism and downstream signalling.  相似文献   
9.
α-Synuclein (α-Syn) is a protein implicated in the pathogenesis of Parkinson''s disease (PD). It is an intrinsically disordered protein that binds acidic phospholipids. Growing evidence supports a role for α-Syn in membrane trafficking, including, mechanisms of endocytosis and exocytosis, although the exact role of α-Syn in these mechanisms is currently unclear. Here we investigate the associations of α-Syn with the acidic phosphoinositides (PIPs), phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) and phosphatidylinositol 3,4-bisphosphate (PI(3,4)P2). Our results show that α-Syn colocalizes with PIP2 and the phosphorylated active form of the clathrin adaptor protein 2 (AP2) at clathrin-coated pits. Using endocytosis of transferrin as an indicator for clathrin-mediated endocytosis (CME), we find that α-Syn involvement in endocytosis is specifically mediated through PI(4,5)P2 levels on the plasma membrane. In accord with their effects on PI(4,5)P2 levels, the PD associated A30P, E46K, and A53T mutations in α-Syn further enhance CME in neuronal and nonneuronal cells. However, lysine to glutamic acid substitutions at the KTKEGV repeat domain of α-Syn, which interfere with phospholipid binding, are ineffective in enhancing CME. We further show that the rate of synaptic vesicle (SV) endocytosis is differentially affected by the α-Syn mutations and associates with their effects on PI(4,5)P2 levels, however, with the exception of the A30P mutation. This study provides evidence for a critical involvement of PIPs in α-Syn–mediated membrane trafficking.  相似文献   
10.
Phosphoinositides (PIs) are essential metabolites which are generated by various lipid kinases and rapidly respond to a variety of environmental stimuli in eukaryotes. One of the precursors of important regulatory PIs, phosphatidylinositol (PtdIn) 4‐phosphate, is synthesized by PtdIns 4‐kinases (PI4K). Despite its wide distribution in eukaryotes, its role in plants remains largely unknown. Here, we show that the activity of AtPI4Kγ3 gene, an Arabidopsis (Arabidopsis thaliana) type II PtdIn 4‐kinase, is regulated by DNA demethylation and some abiotic stresses. AtPI4Kγ3 is targeted to the nucleus and selectively bounds to a few PtdIns. It possessed autophosphorylation activity but unexpectedly had no detectable lipid kinase activity. Overexpression of AtPI4Kγ3 revealed enhanced tolerance to high salinity or ABA along with inducible expression of a host of stress‐responsive genes and an optimal accumulation of reactive oxygen species. Furthermore, overexpressed AtPI4Kγ3 augmented the salt tolerance of bzip60 mutants. The ubiquitin‐like domain of AtPI4Kγ3 is demonstrated to be essential for salt stress tolerance. Besides, AtPI4Kγ3‐overexpressed plants showed a late‐flowering phenotype, which was caused by the regulation of some flowering pathway integrators. In all, our results indicate that AtPI4Kγ3 is necessary for reinforcement of plant response to abiotic stresses and delay of the floral transition.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号