首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
  2003年   1篇
  2002年   1篇
排序方式: 共有2条查询结果,搜索用时 0 毫秒
1
1.
Arginine kinase catalyzes the transphosphorylation between phosphoarginine and ADP. Phosphoarginine is involved in temporal ATP buffering and inorganic phosphate regulation. Trypanosoma cruzi arginine kinase phosphorylates only L-arginine (specific activity 398.9 x mUE-min(-1) x mg(-1)), and is inhibited by the arginine analogs, agmatine, canavanine, nitroarginine, and homoarginine. Canavanine and homoarginine also produce a significant inhibition of the epimastigote culture growth (79.7% and 55.8%, respectively). Inhibition constants were calculated for canavanine and homoarginine (7.55 and 6.02 mM, respectively). In addition, two novel guanidino kinase activities were detected in the epimastigote soluble extract. The development of the arginine kinase inhibitors of T. cruzi could be an important feature because the phosphagens biosynthetic pathway in trypanosomatids is different from the one in their mammalian hosts.  相似文献   
2.
This work reports the characterization of an arginine kinase in the unicellular parasitic flagellate Trypanosoma brucei, the etiological agent of human sleeping sickness and Nagana in livestock. The arginine kinase activity, detected in the soluble fraction obtained from procyclic forms, had a specific activity similar to that observed in Trypanosoma cruzi, about 0.2 micromol min(-1) mg(-1). Western blot analysis of T. brucei extracts revealed two bands of 40 and 45 kDa. The putative gene sequence of this enzyme had an open reading frame for a 356-amino acid polypeptide, one less than the equivalent enzyme of T. cruzi. The deduced amino acid sequence has an 82% identity with the arginine kinase of T. cruzi, and highest amino acid identities of both trypanosomatids sequences, about 70%, were with arginine kinases from the phylum Arthropoda. In addition, the amino acid sequence possesses the five arginine residues critical for interaction with ATP as well as two glutamic acids and one cysteine required for arginine binding. The finding in trypanosomatids of a new phosphagen biosynthetic pathway, which is not present in mammalian host tissues, suggests this enzyme as a possible target for chemotherapy.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号