首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12篇
  免费   0篇
  2013年   1篇
  2010年   1篇
  2008年   1篇
  2004年   1篇
  1998年   1篇
  1997年   1篇
  1993年   1篇
  1984年   1篇
  1983年   1篇
  1982年   2篇
  1981年   1篇
排序方式: 共有12条查询结果,搜索用时 15 毫秒
1.
The structure of the predicted amino acid sequence in the FX domain of Photosystem 1 was studied by molecular modeling and a working hypothesis was developed for the functional interaction of PsaC with the core heterodimer. We propose that the intervening sequences between homologous cysteines in the FX cluster form two flexible loops and participate in the binding of PsaC, and that the arginine residues in the two surface-exposed loops may promote the interaction between the P700–FX core and the subunit. The model was tested experimentally; chemical modification of arginine residues in the P700–FX core using phenylglyoxal prevented reconstitution of the core with PsaC and PsaD after insertion of FeS clusters in vitro. Treatment of the P700–FX core with trypsin also prevented reconstitution of terminal electron transfer to FAFB, although neither treatments affected the electron transfer to FX as judged by flash kinetic spectrophotometry. Electron transfer in the P700–FAFB complex was not impaired by either phenylglyoxal or trypsin treatment indicating that the small subunit(s) protect the arginine residues that become chemically modified or cleaved. The data are consistent with the working model and point to additional experiments designed to identify the specific residues involved in the interaction between the P700–FX core and PsaC.Abbreviations PG- phenylglyoxal - PS 1- Photosystem 1  相似文献   
2.
In order to titrate and understand the role of arginyl residues of D-β-hydroxybutyrate dehydrogenase, arginyl specific reagents: butanedione, 1,2-cyclohexanedione and phenylglyoxal were incubated with three different forms of the enzyme; native enzyme (inner mitochondrial membrane bound), purified apoenzyme (phospholipid -free) and phospholipid-enzyme complex (reconstituted active form).After complete inactivation of the enzyme by [14C]-phenylglyoxal, the number of modified arginyl residues was different: one with the lipid-free apoenzyme and three with the phospholipid-enzyme complex, suggesting a conformational change of the enzyme triggered by the presence of phospholipids.After exhaustive chemical modification either of the apoenzyme or of the phospholipid-enzyme complex with [14C]-phenylglyoxal, four arginyl residues were titrated indicating that these residues are located in the hydrophilic part of the enzyme, not interacting with phospholipids.Reconstituted enzyme inactivated by butanedione could no longer bind a pseudosubstrate (succinate) which indicates that an arginyl residue is involved in the enzyme-substrate complex formation.The values of second order rate constants of D-β-hydroxybutyrate dehydrogenase inactivation by butanedione and 1,2-cyclohexanedione were unchanged with the three enzyme forms, suggesting that phospholipids are not involved in the substrate binding mechanism.  相似文献   
3.
The amino reagent 2,4,6-trinitrobenzenesulfonate (TNBS) was found to inactivate mitochondrial F1-ATPase through covalent labeling, which was not reversed by dithiothreitol. The observed rate of inactivation was retarded by inorganic phosphate, but enhanced by prior labeling of F1 with 7-chloro-4-nitrobenzo-2-oxa-1,3-diazole (NBD-C1). These observations are consistent with the presence of an essential amino group near the bound inorganic phosphate at the catalytic site of F1. A comparison of the observed protection of F1 from NBD-C1 and 5′-p-fluorosulfonyl-benzoyladenosine (FSBA) respectively by inorganic phosphate and by 2′,3′-O-(2,4,6-trinitrophenyl)adenosine 5′-monophosphate (TNP-AMP) suggests that NBD-C1 labels an essential Tyr residue in the positively charged locus for binding the polyphosphate end of ATP, and that FSBA labels an essential Tyr residue in the more hydrophobic locus for binding the adenosine moiety of ATP at the catalytic site of F1.  相似文献   
4.
5.
Different from some more specialised short reviews, here a general although not encyclopaedic survey of the function, metabolic role, structure and mechanism of the ADP/ATP transport in mitochondria is presented. The obvious need for an “old fashioned” review comes from the gateway role in metabolism of the ATP transfer to the cytosol from mitochondria. Amidst the labours, 40 or more years ago, of unravelling the role of mitochondrial compartments and of the two membranes, the sequence of steps of how ATP arrives in the cytosol became a major issue. When the dust settled, a picture emerged where ATP is exported across the inner membrane in a 1:1 exchange against ADP and where the selection of ATP versus ADP is controlled by the high membrane potential at the inner membrane, thus uplifting the free energy of ATP in the cytosol over the mitochondrial matrix. Thus the disparate energy and redox states of the two major compartments are bridged by two membrane potential responsive carriers to enable their symbiosis in the eukaryotic cell. The advance to the molecular level by studying the binding of nucleotides and inhibitors was facilitated by the high level of carrier (AAC) binding sites in the mitochondrial membrane. A striking flexibility of nucleotide binding uncovered the reorientation of carrier sites between outer and inner face, assisted by the side specific high affinity inhibitors. The evidence of a single carrier site versus separate sites for substrate and inhibitors was expounded. In an ideal setting principles of transport catalysis were elucidated. The isolation of intact AAC as a first for any transporter enabled the reconstitution of transport for unravelling, independently of mitochondrial complications, the factors controlling the ADP/ATP exchange. Electrical currents measured with the reconstituted AAC demonstrated electrogenic translocation and charge shift of reorienting carrier sites. Aberrant or vital para-functions of AAC in basal uncoupling and in the mitochondrial pore transition were demonstrated in mitochondria and by patch clamp with reconstituted AAC. The first amino acid sequence of AAC and of any eukaryotic carrier furnished a 6-transmembrane helix folding model, and was the basis for mapping the structure by access studies with various probes, and for demonstrating the strong conformation changes demanded by the reorientation mechanism. Mutations served to elucidate the function of residues, including the particular sensitivity of ATP versus ADP transport to deletion of critical positive charge in AAC. After resisting for decades, at last the atomic crystal structure of the stabilised CAT-AAC complex emerged supporting the predicted principle fold of the AAC but showing unexpected features relevant to mechanism. Being a snapshot of an extreme abortive “c-state” the actual mechanism still remains a conjecture.  相似文献   
6.
Penicillin G acylase (PGA) is used for the commercial production of semi-synthetic penicillins. It hydrolyses the amide bond in penicillin producing 6-aminopenicillanic acid and phenylacetate. 6-Aminopenicillanic acid, having the beta-lactam nucleus, is the parent compound for all semi-synthetic penicillins. Penicillin G acylase from Kluyvera citrophila was purified and chemically modified to identify the role of arginine in catalysis. Modification with 20 mM phenylglyoxal and 50 mM 2,3-butanedione resulted in 82% and 78% inactivation, respectively. Inactivation was prevented by protection with benzylpenicillin or phenylacetate at 50 mM. The reaction followed psuedo-first order kinetics and the inactivation kinetics (V(max), K(m), and k(cat)) of native and modified enzyme indicates the essentiality of arginyl residue in catalysis.  相似文献   
7.
Summary Low molecular weight nitrogenous impurity compounds as well as raffinose are negative quality factors that interfere with efficient processing of sugarbeet (Beta vulgaris L.) for sucrose. In order to identify nutrient media for cell selection of biochemical mutants or transgenics that might have reduced levels of these processing impurities, the ability of 10 endogenous compounds to serve as sole nitrogen or carbon source for suspension plating and subculture callus growth was evaluated. The most productive concentrations of nitrate, ammonium, l-glutamine, l-glutamate, urea, and l-proline as sole nitrogen sources supported plating callus growth at 106, 159, 233, 167, 80, and 52%, respectively, as well as the historical 60 mM mix of nitrate and ammonium in Murashige-Skoog medium. Glycine betaine and choline did not support growth. d(+) Raffinose and d(+) galactose supported plating callus growth only 67 and 25%, respectively, as well as sucrose as sole carbohydrate source. No callus growth occurred on glutamine, glutamate, or glycine betaine as the sole carbon or carbon plus nitrogen source. Platings on either nitrate or ammonium as sole nitrogen source did not differ in sensitivity to the nitrate uptake inhibitor phenylglyoxal, suggesting that phenylglyoxal lacks the specificity for use in selection for mutants of nitrate uptake. The ability of raffinose to be used as the carbon source, and glutamine or glutamate as the nitrogen source, may preclude their use for selection of genetic variants accumulating less of these processing impurities. However, mutants or transgenics able to utilize either glutamine, glutamate, or glycine betaine might be selectable on media containing any one of these as carbon, nitrogen, or carbon plus nitrogen source, respectively, that is incapable of supporting wild-type cell growth.  相似文献   
8.
Laila Zaki 《FEBS letters》1984,169(2):234-240
The reaction of phenylglyoxal, a reagent specific for arginine residues, with erythrocyte membrane at pH 7.4 results in complete inhibition of sulfate equilibrium exchange across human red cells. The inactivation was found to be concentration and time depenent. The binding sites of this reagent in the anion transport protein (band 3) under these conditions were determined by using [14C]phenylglyoxal. The rate of incorporation of the radioactivity into band 3 gave a good correlation with the rate of inactivation. Under conditions where the transport is completely inhibited about 6 mol [14C]phenylglyoxal are incorporated into 1 mol band 3. Treating the [14C]phenylglyoxalated ghosts at different degrees of inactivation with extracellular chymotrypsin showed that about two-thirds of these binding sites are located on the 60 kDa fragment.  相似文献   
9.
The effects of the arginine modifying reagent phenylglyoxal (PGO) on solute transport was studied in two cellular systems: protoplasts isolated from the mesophyll of Vicia faba L. and XD cell suspension culture of Nicotiana tabacum L. cv. Xanthi. The solutes in the case of the protoplasts were the non‐metabolizable glucose analog 3‐O‐methyl‐D‐glucose (MeG), and a non‐metabolizable amino acid analog α‐aminoisobutyric acid (AIB), whereas the solutes for the cell suspension were AIB and nitrate. Solute transport in both systems was rapidly inhibited by PGO. Exposure of the protoplasts to light enhanced the initial rate of MeG uptake. PGO rapidly inhibited MeG uptake in both the light and the dark, the half‐time for inactivation being less than 3 min. Flux analysis of double‐labeled MeG showed that initial MeG uptake was mediated mainly by the plasma membrane transport system and that it was inhibited by PGO. Maximal inhibition of initial MeG uptake rate was observed at PGO concentrations of 1 m M and above. PGO treatment altered rapidly the equilibrium distribution of the ΔpH probe dimethyloxazolidine (DMO) in both cellular systems, indicating dissipation of ΔpH between cell and medium. In the protoplasts, PGO inhibited both DMO and MeG uptake at pH 5.5; however, at pH 7.0, where ΔpH is minimal, only MeG uptake was inhibited. Our results suggest that PGO has two effects on glucose uptake: an indirect effect through ΔpH dissipation and a direct effect through interaction with essential arginyl residues in the glucose transporter.  相似文献   
10.

Background

Dienelactone hydrolases catalyze the hydrolysis of dienelactone to maleylacetate, which play a key role for the microbial degradation of chloroaromatics via chlorocatechols. Here, a thermostable dienelactone hydrolase from thermoacidophilic archaeon Sulfolobus solfataricus P1 was the first purified and characterized and then expressed in Escherichia coli.

Methods

The enzyme was purified by using several column chromatographys and characterized by determining the enzyme activity using p-nitrophenyl caprylate and dienelactones. In addition, the amino acids related to the catalytic mechanism were examined by site-directed mutagenesis using the identified gene.

Results

The enzyme, approximately 29 kDa monomeric, showed the maximal activity at 74 °C and pH 5.0, respectively. The enzyme displayed remarkable thermostability: it retained approximately 50% of its activity after 50 h of incubation at 90 °C, and showed high stability against denaturing agents, including various detergents, urea, and organic solvents. The enzyme displayed substrate specificities toward trans-dienelactone, not cis-isomer, and also carboxylesterase activity toward p-nitrophenyl esters ranging from butyrate (C4) to laurate (C12). The kcat/Km ratios for trans-dienelactone and p-nitrophenyl caprylate (C8), the best substrate, were 92.5 and 54.7 s−1 μM−1, respectively.

Conclusions

The enzyme is a typical dienelactone hydrolase belonging to α/β hydrolase family and containing a catalytic triad composed of Cys151, Asp198, and His229 in the active site.

General significance

The enzyme is the first characterized archaeal dienelactone hydrolase.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号