首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4755篇
  免费   699篇
  国内免费   426篇
  2024年   11篇
  2023年   128篇
  2022年   110篇
  2021年   210篇
  2020年   242篇
  2019年   266篇
  2018年   238篇
  2017年   240篇
  2016年   243篇
  2015年   258篇
  2014年   298篇
  2013年   285篇
  2012年   203篇
  2011年   210篇
  2010年   172篇
  2009年   251篇
  2008年   257篇
  2007年   255篇
  2006年   214篇
  2005年   203篇
  2004年   152篇
  2003年   152篇
  2002年   162篇
  2001年   132篇
  2000年   123篇
  1999年   120篇
  1998年   91篇
  1997年   81篇
  1996年   81篇
  1995年   61篇
  1994年   47篇
  1993年   47篇
  1992年   37篇
  1991年   45篇
  1990年   37篇
  1989年   27篇
  1988年   29篇
  1987年   15篇
  1986年   18篇
  1985年   21篇
  1984年   22篇
  1983年   16篇
  1982年   22篇
  1981年   13篇
  1980年   9篇
  1979年   11篇
  1978年   5篇
  1977年   3篇
  1976年   3篇
  1973年   2篇
排序方式: 共有5880条查询结果,搜索用时 15 毫秒
1.
《Developmental cell》2021,56(21):2952-2965.e9
  1. Download : Download high-res image (167KB)
  2. Download : Download full-size image
  相似文献   
2.
Intraspecific trait variation (ITV), based on available genetic diversity, is one of the major means plant populations can respond to environmental variability. The study of functional trait variation and diversity has become popular in ecological research, for example, as a proxy for plant performance influencing fitness. Up to now, it is unclear which aspects of intraspecific functional trait variation (iFDCV) can be attributed to the environment or genetics under natural conditions. Here, we examined 260 individuals from 13 locations of the rare (semi‐)dry calcareous grassland species Trifolium montanum L. in terms of iFDCV, within‐habitat heterogeneity, and genetic diversity. The iFDCV was assessed by measuring functional traits (releasing height, biomass, leaf area, specific leaf area, leaf dry matter content, Fv/Fm, performance index, stomatal pore surface, and stomatal pore area index). Abiotic within‐habitat heterogeneity was derived from altitude, slope exposure, slope, leaf area index, soil depth, and further soil factors. Based on microsatellites, we calculated expected heterozygosity (He) because it best‐explained, among other indices, iFDCV. We performed multiple linear regression models quantifying relationships among iFDCV, abiotic within‐habitat heterogeneity and genetic diversity, and also between separate functional traits and abiotic within‐habitat heterogeneity or genetic diversity. We found that abiotic within‐habitat heterogeneity influenced iFDCV twice as strong compared to genetic diversity. Both aspects together explained 77% of variation in iFDCV ( = .77, F2, 10 = 21.66, p < .001). The majority of functional traits (releasing height, biomass, specific leaf area, leaf dry matter content, Fv/Fm, and performance index) were related to abiotic habitat conditions indicating responses to environmental heterogeneity. In contrast, only morphology‐related functional traits (releasing height, biomass, and leaf area) were related to genetics. Our results suggest that both within‐habitat heterogeneity and genetic diversity affect iFDCV and are thus crucial to consider when aiming to understand or predict changes of plant species performance under changing environmental conditions.  相似文献   
3.
The association between the red macroalga Jania adhaerens J. V. Lamour. and the sponge Haliclona caerulea is the most successful life‐form between 2 and 4 m depth in Mazatlán Bay (Mexican Pacific). J. adhaerens colonizes the rocky intertidal area and penetrates into deeper areas only when it lives in association with H. caerulea. The aposymbiotic form of the sponge has not been reported in the bay. To understand the ecological success of this association, we examined the capacity of J. adhaerens to acclimate in Mazatlán Bay using transplant experiments. The transplanted aposymbiotic J. adhaerens did not survive the first 2 weeks; however, J. adhaerens when living in association with H. caerulea, acclimated easily to depth, showing no sign of mortality during the 103 d of the experiment. We conclude that the ability of J. adhaerens to colonize in deeper areas in this hydrodynamic environment may in part rely on the protection provided by the sponge to the algal canopy. Both species contribute to the shape of the associated form. Nevertheless, the morphological variation in the association appears to be dominated by the variation in J. adhaerens canopy to regulate pigment self‐shading under light‐limited conditions and/or tissue resistance under high hydrodynamics. Consequently, our results are consistent with light as the abiotic controlling factor, which regulates the lower depth distribution of the association in Mazatlán Bay, through limiting the growth rate of J. adhaerens. Hydrodynamics may determine the upper limit of the association by imposing high mass losses.  相似文献   
4.
5.
6.
1. Despite the growing view that biodiversity provides a unifying theme in river ecology, global perspectives on richness in riverine landscapes are limited. As a result, there is little theory or quantitative data on features that might have influenced global patterns in riverine richness, nor are there clear indications of which riverine landscapes are important to conservation at the global scale. As conspicuous elements of the vertebrate fauna of riverine landscapes, we mapped the global distributions of all of the world's specialist riverine birds and assessed their richness in relation to latitude, altitude, primary productivity and geomorphological complexity (surface configuration). 2. Specialist riverine birds, typical of high‐energy riverine landscapes and dependent wholly or partly on production from river ecosystems, occur in 16 families. They are represented by an estimated 60 species divided equally between the passerines and non‐passerines. Major radiation has occurred among different families on different continents, indicating that birds have evolved several times into the niches provided by riverine landscapes. 3. Continental richness varies from four species in Europe to 28 in Asia, with richness on the latter continent disproportionately larger than would be expected from a random distribution with respect to land area. Richness is greatest in mountainous regions at latitudes of 20–40°N in the riverine landscapes of the Himalayan mountains, where 13 species overlap in range. 4. Family, genus and species richness in specialist riverine birds all increase significantly with productivity and surface configuration (i.e. relief). However, family richness was the best single predictor of the numbers of species or genera. In keeping with the effect of surface configuration, river‐bird richness peaks globally at 1300–1400 m altitude, and most species occur typically on small, fast rivers where they feed predominantly on invertebrates. Increased lengths of such streams in areas of high relief and rainfall might have been responsible for species–area effects. 5. We propose the hypothesis that the diversity in channel forms and habitats in riverine landscapes, in addition to high temperature and primary productivity, have been prerequisites to the development of global patterns in the richness of specialist riverine organisms. We advocate tests of this hypothesis in other taxonomic groups. We draw attention, however, to the challenges of categorically defining riverine organisms in such tests because (i) rivers grade into many other habitat types across several different ecotones and (ii) `terrestrialisation' processes in riverine landscapes means that they offer habitat for organisms whose evolutionary origins are not exclusively riverine.  相似文献   
7.
In many ecological situations, resources are difficult to find but become more apparent to nearby searchers after one of their numbers discovers and begins to exploit them. If the discoverer cannot monopolize the resources, then others may benefit from joining the discoverer and sharing their discovery. Existing theories for this type of conspecific attraction have often used very simple rules for how the decision to join a discovered resource patch should be influenced by the number of individuals already exploiting that patch. We use a mechanistic, spatially explicit model to demonstrate that individuals should not necessarily simply join patches more often as the number of individuals exploiting the patch increases, because those patches are likely to be exhausted soon or joining them will intensify future local competition. Furthermore, we show that this decision should be sensitive to the nature of the resource patches, with individuals being more responsive to discoveries in general and more tolerant of larger numbers of existing exploiters on a patch when patches are resource-rich and challenging to locate alone. As such, we argue that this greater focus on underlying joining mechanisms suggests that conspecific attraction is a more sophisticated and flexible tactic than currently appreciated.  相似文献   
8.
Abstract. To determine whether increased water motion affects patterns of regeneration in the subtidal burrowing brittlestar Hemipholis elongata (phylum Echinodermata), individuals were subjected to laboratory-controlled turbulence conditions. Half of each replicate aquarium experienced oscillatory (wave-like) turbulence while the other half had no turbulence. Individual brittlestars from which arm-tips had been removed were allowed to burrow and to regenerate. Regenerated arm-tip length and weight were tested for differences between organisms in calm and turbulent conditions. Regenerated arm-tip length differed significantly between control and treatment, but arm-tip dry weight and skeleton/tissue ratio of regenerated arm-tips did not. To quantify plasticity in the skeleton, 15 morphological measurements made on the proximal face of vertebral ossicles (using scanning electron microscopy) were integrated as an index of overall ossicle size. We found a significant difference in the overall size index of the vertebral ossicles between treatments, but could not determine which of the measurements contributed most to the difference. The results indicate that regeneration in H. elongata is a complex process that can be modified by environmental conditions.  相似文献   
9.
The purpose of this study was to explore new insights in non-linearity, hysteresis and ventilation heterogeneity of asthmatic human lungs using four-dimensional computed tomography (4D-CT) image data acquired during tidal breathing. Volumetric image data were acquired for 5 non-severe and one severe asthmatic volunteers. Besides 4D-CT image data, function residual capacity and total lung capacity image data during breath-hold were acquired for comparison with dynamic scans. Quantitative results were compared with the previously reported analysis of five healthy human lungs. Using an image registration technique, local variables such as regional ventilation and anisotropic deformation index (ADI) were estimated. Regional ventilation characteristics of non-severe asthmatic subjects were similar to those of healthy subjects, but different from the severe asthmatic subject. Lobar airflow fractions were also well correlated between static and dynamic scans (R2 > 0.84). However, local ventilation heterogeneity significantly increased during tidal breathing in both healthy and asthmatic subjects relative to that of breath-hold perhaps because of airway resistance present only in dynamic breathing. ADI was used to quantify non-linearity and hysteresis of lung motion during tidal breathing. Non-linearity was greater on inhalation than exhalation among all subjects. However, exhalation non-linearity among asthmatic subjects was greater than healthy subjects and the difference diminished during inhalation. An increase of non-linearity during exhalation in asthmatic subjects accounted for lower hysteresis relative to that of healthy ones. Thus, assessment of non-linearity differences between healthy and asthmatic lungs during exhalation may provide quantitative metrics for subject identification and outcome assessment of new interventions.  相似文献   
10.
The genetic correlation is a central parameter of quantitative genetics, providing a measure of the rate at which traits respond to indirect selection (i.e., selection that does not act upon the traits under study, but some other trait with which they have genes in common). In this paper, I review the pattern of variation among four combinations of traits: life history × life history (L × L), morphological × morphological (M × M), life history × morphological (L × M), and behavioral × behavioral (B × B). A few other combinations were investigated, but insufficient data were obtained for separate analysis. A total of 1798 correlations, distributed over 51 different animal and plant species, were analyzed. The analysis was conducted at two levels: first by dividing the data set solely by trait combination, and second by blocking the data by trait combination and species. Because selection will tend to fix alleles that show positive correlations with fitness traits faster than those that are negative and because the latter are expected to arise more frequently by mutation, correlations between life-history traits are predicted to be more often negative than those between morphological traits. This prediction was supported, with the ranking in decreasing proportion of negative correlations being: L × L > L × M > B × B > M × M. The mean magnitude of the genetic correlation shows little variation among morphological and life-history combinations, and the distribution of values is remarkably flat. However, the estimated standard errors and the coefficient of variation (SE/rG) are large, making it difficult to separate biological factors influencing the pattern of dispersion from experimental error. Analysis of the phenotypic and genetic correlations suggest that for the combinations M × M and L × M, but not L × L or B × B, the phenotypic correlation is an adequate estimate of the genetic correlation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号