首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   91篇
  免费   2篇
  国内免费   18篇
  2023年   1篇
  2021年   2篇
  2020年   1篇
  2019年   2篇
  2018年   2篇
  2017年   3篇
  2016年   3篇
  2014年   3篇
  2013年   3篇
  2012年   4篇
  2011年   6篇
  2010年   2篇
  2009年   3篇
  2008年   6篇
  2007年   5篇
  2006年   9篇
  2005年   8篇
  2004年   1篇
  2003年   5篇
  2002年   3篇
  2001年   8篇
  2000年   3篇
  1999年   3篇
  1998年   1篇
  1997年   5篇
  1996年   3篇
  1995年   2篇
  1994年   1篇
  1992年   2篇
  1985年   4篇
  1982年   2篇
  1981年   1篇
  1978年   1篇
  1977年   1篇
  1976年   1篇
  1974年   1篇
排序方式: 共有111条查询结果,搜索用时 15 毫秒
1.
The solubilization and mineralization of (14)C-phenanthrene in soil-water systems was examined with several commercially available surface-active agents, viz., an alkyl ethoxylate C(12)E(4); two alkylphenol ethoxylate surfactants: C(8)PE(9.5) and C(9)PE(10.5); two sorbitan ethoxylate surfactants: the sorbitan monolaurate (Tween 20) and the sorbitan monooleate (Tween 80); two pairs of nonionic ethoxylate surfactant mixtures: C(12)E(4)/C(12)E(23) at a 1:1 ratio, and C(12-15)E(3)/C(12-15)E(9) at a 1:3 ratio; and two surfactants possessing relatively high critical micelle concentration (CMC) values and low aggregation numbers: CHAPS and octyglucoside. Surface tension experiments were performed to evaluate surfactant sorption onto soil and the surfactant doses required to attain the CMC in the soil-water systems. Surfactant solubilization of (14)C-phenanthrene commenced with the onset of micellization. The addition of surface-active agents was observed not to be beneficial to the microbial mineralization of phenanthrene in the soil-water systems and, for supra-CMC surfactant doses, phenanthrene mineralization was completely inhibited for all the surfactants tested. A comparison of solubilization, surface tension, and mineralization data confirms that the inhibitory effect on microbial degradation of phenanthrene is related to the CMC of the surfactant in the presence of soil. Additional tests demonstrated the recovery of mineralization upon dilution of surfactant concentration to sub-CMC levels, and a relatively high exit rate for phenanthrene from micelles. These tests suggest that the inhibitory effect is probably related to a reversible physiological surfactant micelle-bacteria interaction, possibly through partial complexing or release of membrane material with disrupting membrane lamellar structure. This study indicates that nonionic surfactant solubilization of sorbed hydrophobic organic compounds from soil may not be beneficial for the concomitant enhancement of soil bioremediation. Additional work is needed to address physicochemical processes for bioavailability enhancement, and effects of solubilizing agents on microorganisms for remediation and treatment of hydrophobic organic compounds and nonaqueous phase liquids. (c) 1992 John Wiley & Sons Inc.  相似文献   
2.
Schwartz E  Scow KM 《Biodegradation》2001,12(3):201-207
Phenanthrene, a polycyclic aromatic hydrocarbon, becomes increasingly unavailable to microorganisms for degradation as it ages in soil. Consequently, many bioaugmentation efforts to remediate polycyclic aromatic hydrocarbons in soil have failed. We studied theeffect of repeatedly inoculating a soil with a phenanthrene-degrading Arthrobacter sp. on the mineralization kinetics of low concentrations of phenanthrene. After the first inoculation, the initial mineralization rate of 50 ng/g phenanthrene declined in a biphasicexponential pattern. By three hundred hours after inoculation, there was no difference in mineralization rates between the inoculated and uninoculated treatments even though a large fraction of the phenanthrene had not yet been mineralized. A second and third inoculation significantly increased the mineralization rate, suggesting that, though themineralization rate declined, phenanthrene remained bioavailable. Restirring the soil, without inoculation, did not produce similar increases in mineralization rates, suggesting absence of contact between cells and phenanthrene on a larger spatial scale (>mm) is not the cause of the mineralization decline. Bacteria inoculated into soil 280 hours beforethe phenanthrene was added could not maintain phenanthrene degradation activity. We suggest sorption lowered bioavailability of phenanthrene below an induction threshold concentration for metabolic activity of phenanthrene-degrading bacteria.  相似文献   
3.
Degradation of polyaromatic hydrocarbons by Burkholderia cepacia 2A-12   总被引:1,自引:1,他引:0  
A new strain of bacterium degrading polyaromatic hydrocarbons (PAHs), Burkholderia cepacia 2A-12, was isolated from oil-contaminated soil. Of three PAHs, the isolated strain could utilize naphthalene (Nap) and phenanthrene (Phe) as a sole carbon source but not pyrene (Pyr). However, the strain could degrade Pyr when a cosubstrate such as yeast extract (YE) was supplemented. The PAH degradation rate of the strain was enhanced by the addition of other organic materials such as YE, peptone, glucose, and sucrose. YE was a particularly effective additive in stimulating cell growth as well as PAH degradation. When 1 g YE l–1, an optimum concentration, was supplemented into the basal salt medium (BSM) with 215 mg Phe l–1, the specific growth rate (0.30 h–1) and Phe-degrading rate (29.6 mol l–1 h–1) were enhanced approximately ten and three times more than those obtained in the BSM with 215 mg Phe l–1, respectively. Both cell growth and PAH degradation rates were increased with increasing Phe and Pyr concentrations, and B. cepacia 2A-12 had a tolerance against Phe and Pyr toxicity at the high concentration of 730–760 mg l–1. Through kinetic analysis, the maximum specific growth rate ( max) and PAH degrading rate ( max) for Phe were obtained as 0.39 h–1 and 300 mol l–1 h–1, respectively. Also, max and max for Pyr were 0.27 h–1 and 52 mol l–1 h–1, respectively. B. cepacia 2A-12 could simultaneously degrade crude oil as well as PAHs, indicating that this bacterium is very useful for the removal of oils and PAHs contaminants.  相似文献   
4.
Anthracene, phenanthrene, and pyrene are polycyclic aromatic hydrocarbon (PAHs) that display both mutagenic and carcinogenic properties. They are recalcitrant to microbial degradation in soil and water due to their complex molecular structure and low solubility in water. This study presents the characterization of an efficient PAH (anthracene, phenanthrene, and pyrene)-degrading microbial consortium, isolated from a petrochemical sludge landfarming site. Soil samples collected at the landfarming area were used as inoculum in Warburg flasks containing soil spiked with 250 mg kg-1 of anthracene. The soil sample with the highest production of CO2-C in 176 days was used in liquid mineral medium for further enrichment of anthracene degraders. The microbial consortium degraded 48%, 67%, and 22% of the anthracene, phenanthrene, and pyrene in the mineral medium, respectively, after 30 days of incubation. Six bacteria, identified by 16S rRNA sequencing as Mycobacterium fortuitum, Bacillus cereus, Microbacterium sp., Gordonia polyisoprenivorans, two Microbacteriaceae bacteria, and a fungus identified as Fusarium oxysporum were isolated from the enrichment culture. The consortium and its monoculture isolates utilized a variety of hydrocarbons including PAHs (pyrene, anthracene, phenanthrene, and naftalene), monoaromatics hydrocarbons (benzene, ethylbenzene, toluene, and xylene), aliphatic hydrocarbons (1-decene, 1-octene, and hexane), hydrocarbon mixtures (gasoline and diesel oil), intermediary metabolites of PAHs degradation (catechol, gentisic acid, salicylic acid, and dihydroxybenzoic acid) and ethanol for growth. Biosurfactant production by the isolates was assessed by an emulsification index and reduction of the surface tension in the mineral medium. Significant emulsification was observed with the isolates, indicating production of high-molecular-weigh surfactants. The high PAH degradation rates, the wide spectrum of hydrocarbons utilization, and emulsification capacities of the microbial consortium and its member microbes indicate that they can be used for biotreatment and bioaugumentation of soils contaminated with PAHs.  相似文献   
5.
The ability of biosurfactants and Acinetobacter calcoaceticus to enhance the emulsification and biodegradation of phenanthrene was investigated. Phenanthrene is a polycyclic aromatic hydrocarbon that may be derived from various sources, for example incomplete combustion of petroleum fuel, and thus it occurs ubiquitously throughout the environment. In order to assess the efficacy of a biosurfactant microparticle system, emulsification assays and in vitro biodegradation studies were conducted. Emulsification assays were carried out to assess the stability of phenanthrene emulsions. Emulsion stability was determined by the height of the emulsion layer (Emulsification Index) and turbidity. In vitro biodegradation tests were done to estimate phenanthrene degradation from an aqueous system by A. calcoaceticus supplemented with encapsulated (ERhBS) and nonencapsulated biosurfactants (NERhBS). Results show that phenanthrene emulsifications were stabilized after 48 h with NERhBS and remained stable for 72 additional hours. Phenanthrene emulsifications were stabilized with ERhBS after 216 h and remained stable for an additional 96 h. A. calcoaceticus alone and supplemented with rhamnolipid biosurfactant were able to biodegrade 10 to 50 mg L?1 of phenanthrene within 250 h. When supplemented with NERhBS, A. calcoaceticus degraded phenanthrene significantly faster than when nonsupplemented or supplemented with ERhBS. Addition of exogenous biosurfactants was considered to be a major factor driving the direct correlation between decreasing phenanthrene concentration in the system and increasing bacterial biomass.  相似文献   
6.
AIMS: To study the effect of zinc on the biodegradation of phenanthrene by the microbial biomass in soil. METHODS AND RESULTS: Uncontaminated soil was amended with zinc and phenanthrene as single or co-contaminants, and microbial metabolic activity was measured using an intracellular dehydrogenase enzyme bioassay over 37 days. Contaminants were amended at optimum, action and double the action level specified in 'The New Dutch List' (Ministry of Housing, Spatial Planning and Environment, the Netherlands, 2000). Microbial activity in soils with zinc or phenanthrene alone indicated the presence of tolerant, albeit inhibited soil micro-organisms. A zinc concentration at the optimum level of 140 mg kg(-1) in the co-contaminated soil (phenanthrene at 40 mg kg(-1)) resulted in marginal stimulation of the rate of phenanthrene biodegradation. However, Zn2+ concentrations at the action and double the action level of zinc (720 and 1440 mg kg(-1)) inhibited phenanthrene degradation. CONCLUSIONS: Biodegradation of phenanthrene in soils co-contaminated with zinc at concentrations above the action value is impeded. SIGNIFICANCE AND IMPACT OF THE STUDY: Bioremediation efforts to remove polycyclic aromatic hydrocarbon in zinc co-contaminated soils are likely to be constrained.  相似文献   
7.
Xia Y  Min H  Rao G  Lv ZM  Liu J  Ye YF  Duan XJ 《Biodegradation》2005,16(5):393-402
Phenanthrene-degrading bacterium strain ZX4 was isolated from an oil-contaminated soil, and identified as Sphingomonas paucimobilis based on 16S rDNA sequence, cellular fatty acid composition, mol% G + C and Biolog-GN tests. Besides phenanthrene, strain ZX4 could also utilize naphthalene, fluorene and other aromatic compounds. The growth on salicylic acid and catechol showed that the strain degraded phenanthrene via salicylate pathway, while the assay of catechol 2, 3-dioxygenase revealed catechol could be metabolized through meta-cleavage pathway. Three genes, including two of meta-cleavage operon genes and one of GST encoding gene were obtained. The order of genes arrangement was similar to S-type meta-pathway operons. The phylogenetic trees based on 16S rDNA sequence and meta-pathway gene both revealed that strain ZX4 is clustered with strains from genus Sphingomonas.  相似文献   
8.
Characterization of functional and phylogenetic genes was carried out on a bacterial consortium, enriched from a water treatment system of an oilfield, that could use phenanthrene as the sole carbon source. The mixed culture degraded 130 mg phenanthrene l−1 in 16 days, which is significantly faster than previously reported pure cultures. The existence of catabolic genes (nahAc, C23O) in the mixed culture was quantitated by most probable number PCR. The plasmid encoding phenanthrene catabolic genes increased relative to the chromosome genes. Heterogeneous bacteria were present according to both PCR denaturing gradient gel electrophoresis and cloning methods, suggesting the possible existence of cooperation between different biochemical PAH-transforming pathways. Revisions requested 15 December 2005; Revisions received 23 January 2006  相似文献   
9.
从兰州某化工厂石油废水中分离筛选出1株高效降解菲的细菌F-1并对其菌种进行鉴定,结合紫外分光光度法及气相色谱-质谱联用(GC-MS)对菌株生长特性、不同烃类化合物降解特性及菲降解动力学等进行了研究,利用PCR技术检测了芳香烃代谢相关基因。结果表明,菌株F-1属于约翰逊不动杆菌(Acinetobacter johnsonii),可在终浓度为50~800 mg/L的含菲基础培养基中正常生长。在温度30℃、pH 7. 0、盐度0. 3%(质量分数)、转速180 r/min条件下培养5 d后菲(终浓度为100 mg/L)降解率为43. 57%,降解过程符合一级动力学特征。菌株F-1也能利用联苯、萘、蒽、芘为唯一碳源生长。GC-MS分析显示菌株对C10-C28部分直链烷烃具有较强的降解能力。PCR扩增结果表明,菌株F-1基因组中存在邻苯二酚-1,2-双加氧酶、苯甲酸盐双加氧酶、铁氧化还原蛋白还原酶、乙醇脱氢酶、二羟酸脱水酶、醛缩酶和氧化还原蛋白基因。研究结果为该菌株应用到含菲废水及多环芳烃污染土壤的处理和深度修复研究提供参考。  相似文献   
10.
Physiological, biochemical and histological indices in Clarias gariepinus broodstock, and teratogenic indices in embryos exposed to sublethal concentrations of naphthalene, phenanthrene and pyrene were investigated in 2014 using a static-renewal bioassay protocol. Phenanthrene (1.41 mg l?1) was the most toxic, followed by pyrene (1.53 mg l?1) and naphthalene (7.21 mg l?1), based on 96 h LC50 values. Hepatosomatic indices were significantly higher in naphthalene- and pyrene-treated males compared with solvent controls, whereas fecundity in females was significantly lower by factors of 2.4 (naphthalene), 2.8 (phenanthrene) and 2.4 (pyrene), compared with controls. Catalase levels were lower in female phenanthrene-treated fish compared with controls. Histological alterations observed in PAH-treated fish include oedema, inflammatory cells, epithelial lifting and hyperplasia in the gills, vacuolation, haemosiderin pigments and sinusoidal congestion in the liver, and degenerated zona radiata in the ovary. Teratogenic effects were not observed, as evidenced by the lack of histological alterations in embryos spawned from pre-exposed broodstock. Sex-specific responses and the utility of biomarkers at cellular and individual levels of organisation are therefore demonstrated for holistic evaluations of polycyclic aromatic hydrocarbons in ecotoxicological studies.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号