首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   160篇
  免费   4篇
  164篇
  2023年   1篇
  2022年   3篇
  2021年   2篇
  2020年   15篇
  2019年   23篇
  2018年   12篇
  2017年   14篇
  2016年   11篇
  2015年   5篇
  2014年   2篇
  2013年   42篇
  2011年   6篇
  2010年   2篇
  2009年   3篇
  2008年   1篇
  2007年   2篇
  2006年   4篇
  2005年   2篇
  2004年   2篇
  2003年   3篇
  2001年   2篇
  1998年   4篇
  1994年   1篇
  1993年   1篇
  1990年   1篇
排序方式: 共有164条查询结果,搜索用时 9 毫秒
1.
A series of new chiral thiosemicarbazones derived from homochiral amines in both enantiomeric forms were synthesized and evaluated for their in vitro antiproliferative activity against A549 (human alveolar adenocarcinoma), MCF‐7 (human breast adenocarcinoma), HeLa (human cervical adenocarcinoma), and HGC‐27 (human stomach carcinoma) cell lines. Some of compounds showed inhibitory activities on the growth of cancer cell lines. Especially, compound 17b exhibited the most potent activity (IC50 4.6 μM) against HGC‐27 as compared with the reference compound, sindaxel (IC50 10.3 μM), and could be used as a lead compound to search new chiral thiosemicarbazone derivatives as antiproliferative agents. Chirality 27:177–188, 2015. © 2014 Wiley Periodicals, Inc.  相似文献   
2.
The pharmacophore of the human C5a anaphylatoxin.   总被引:3,自引:2,他引:1       下载免费PDF全文
We have determined which amino acids contribute to the pharmacophore of human C5a, a potent inflammatory mediator. A systematic mutational analysis of this 74-amino acid protein was performed and the effects on the potency of receptor binding and of C5a-induced intracellular calcium ion mobilization were measured. This analysis included the construction of hybrids between C5a and the homologous but unreactive C3a protein and site-directed mutagenesis. Ten noncontiguous amino acids from the structurally well-defined 4-helix core domain (amino acids 1-63) and the C-terminal arginine-containing tripeptide were found to contribute to the pharmacophore of human C5a. The 10 mostly charged amino acids from the core domain generally made small incremental contributions toward binding affinity, some of which were independent. Substitutions of the C-terminal amino acid Arg 74 produced the largest single effect. We also found the connection between these 2 important regions to be unconstrained.  相似文献   
3.
The three-dimensional structure of a potent SSTR3-selective analogue of somatostatin, cyclo(3-14)H-Cys(3)-Phe(6)-Tyr(7)-D-Agl(8)(N(beta) Me, 2-naphthoyl)-Lys(9)-Thr(10)-Phe(11)-Cys(14)-OH (des-AA(1, 2, 4, 5, 12, 13)[Tyr(7), D-Agl(8)(N(beta) Me, 2-naphthoyl)]-SRIF) (peptide 1) has been determined by (1)H NMR in water and molecular dynamics (MD) simulations. The peptide exists in two conformational isomers differing mainly by the cis/trans isomerization of the side chain in residue 8. The structure of 1 is compared with the consensus structural motifs of other somatostatin analogues that bind predominantly to SSTR1, SSTR2/SSTR5 and SSTR4 receptors, and to the 3D structure of a non-selective SRIF analogue, cyclo(3-14)H-Cys(3)-Phe(6)-Tyr(7)-D-2Nal(8)-Lys(9)-Thr(10)-Phe(11)-Cys(14)-OH (des-AA(1, 2, 4, 5, 12, 13)[Tyr(7), D-2Nal(8)]-SRIF) (peptide 2). The structural determinant factors that could explain selectivity of peptide 1 for SSTR3 receptors are discussed.  相似文献   
4.
Tyrosinase is a type 3 copper enzyme responsible for skin pigmentation disorders, skin cancer, and enzymatic browning of vegetables and fruits. In the present article, 12 small molecules of 2‐benzylidenehydrazine‐1‐carbothioamide were designed, synthesized and evaluated for their anti‐tyrosinase activities followed by molecular docking and pharmacophore‐based screening. Among synthesized thiosemicarbazone derivatives, one compound, (2E)‐2‐[(4‐nitrophenyl)methylidene]hydrazine‐1‐carbothioamide, is the strongest inhibitor of mushroom tyrosinase with IC50 of 0.05 μM which demonstrated a 128‐fold increase in potency compared to the positive control. Kinetic studies also revealed mix type inhibition by this compound. Docking studies confirmed the complete fitting of the synthesized compounds into the tyrosinase active site. The results underline the potential of 2‐benzylidenehydrazine‐1‐carbothioamides as potent pharmacophore to extend the tyrosinase inhibition in drug discovery.  相似文献   
5.
A2A adenosine receptor (AR) antagonists play an important role in neurodegenerative diseases like Parkinson’s disease. A 3D-QSAR study of A2A AR antagonists, was taken up to design best pharmacophore model. The pharmacophoric features (ADHRR) containing a hydrogen bond acceptor (A), a hydrogen bond donor (D), a hydrophobic group (H) and two aromatic rings (R), is projected as the best predictive pharmacophore model. The QSAR model was further treated as a template for in silico search of databases to identify new scaffolds. The binding patterns of the leads with A2A AR are analysed using docking studies and novel potent ligands of A2A AR are projected.  相似文献   
6.
Abstract

In this study, binding efficiency of new pyrrolopyrimidine structural analogs against human vascular endothelial growth factor receptor-2 (VEGFR-2) were elucidated using integrated in silico methods. Optimized high-resolution model of VEGFR-2 was generated and adopted for structure-based virtual screening approaches. Pyrrolopyrimidine inhibitor (CP15) associated compounds were screened from PubChem database and subjected to virtual screening and comparative docking methods against the receptor ligand-binding domain. Accordingly, high efficient compounds were clustered with similarity indices through PubChem structure cluster module using single-linkage algorithm. Moreover, pharmacokinetics including drug metabolism activities of high-binding leads under investigation was portrayed using ADMET and similarity ensemble analysis. Optimal energy orientations of the selected protein model have been shown to be reliable, and highly recommended for screening and docking studies. Docking and clustering strategies were shown that nineteen candidates as most effective binders for VEGFR-2 than CP15, and are grouped as three classes. Lys868, Glu885, Cys919, His1026, Arg1027, Asp1046, and Gly1048 residues were predicted as novel hotspot residues, and participate in H-bonds, π-cation, π-stacking, halogen bonds, and salt-bridges formation with ligands. These additional bonds are contributing extent stability that holds the receptor structure at flexible state, this make difficult to any further conformational changes for evoking angiogenic signals. The ADMET and similarity ensemble analysis results were strongly indicated that thirteen candidates as best ligands for angiogenesis targets. Altogether, these findings indicate potential angiogenic templates and their binding levels with VEGFR-2; sorted viewpoints could be useful as a promising way to describe potential angiogenesis inhibitors with related molecular targets.  相似文献   
7.
Abstract

In this study we have performed pharmacophore modeling and built a 3D QSAR model for pyrido-indole derivatives as Janus Kinase 2 inhibitors. An efficient pharmacophore has been identified from a data set of 51 molecules and the identified pharmacophore hypothesis consisted of one hydrogen bond acceptor, two hydrogen bond donors and three aromatic rings, i.e. ADDRRR. A powerful 3D-QSAR model has also been constructed by employing Partial Least Square regression analysis with a regression coefficient of 0.97 (R2) and Q2 of 0.95, and Pearson-R of 0.98.  相似文献   
8.
Abstract

In the current contribution, a multicomplex-based pharmacophore modeling approach was employed on the structural proteome of Plasmodium falciparum orotidine-5-monophosphate decarboxylase enzyme (PfOMPDC). Among the constructed pharmacophore models, the representative hypotheses were selected as the primary filter to screen the molecules with the complementary features responsible for showing inhibition. Thereafter, auxiliary evaluations were performed on the screened candidates via drug-likeness and molecular docking studies. Subsequently, the stability of the docked protein-ligand complexes was scrutinized by employing molecular dynamics simulations and molecular mechanics-Poisson Boltzmann surface area based free binding energy calculations. The stability the docked candidates was compared with the highly active crystallized inhibitor (3S9Y-FNU) to seek more potential candidates. All the docked molecules displayed stable dynamic behavior and high binding free energy in comparison to 3S9Y-FNU. The employed workflow resulted in the retrieval of five drug-like candidates with diverse scaffolds that may show inhibitory activity against PfOMPDC and could be further used as the novel scaffold to develop novel antimalarials.

Communicated by Ramaswamy H. Sarma  相似文献   
9.
Sigma-1 (σ1) affinities of methyl 2-(aminomethyl)-1-phenylcyclopropane-1-carboxylate (MAPCC) derivatives were modelled by the genetic algorithm with linear assignment of hypermolecular alignment of datasets (GALAHAD) and the comparative molecular field analysis (CoMFA)/comparative molecular similarity indices analysis (CoMSIA) methods. GALAHAD was used for deriving the 3D pharmacophore pattern that encompasses the most potent σ1 ligands within this series. Five MAPCC derivatives with a high σ1 affinity were used for deriving this model. The obtained model included a nitrogen atom, the hydrophobes and the hydrogen bond acceptor features; it was able to identify other potent σ1 ligands. On the other hand, CoMFA and CoMSIA methods were used for deriving quantitative structure–activity relationship (QSAR) models. All QSAR models were trained with 17 compounds, after which they were evaluated for predictive ability with additional five compounds. The best QSAR model was obtained by using CoMSIA, including steric, electrostatic and hydrophobic fields, and had a good predictive quality according to both internal and external validation criteria. In general, the models described herein provide meaningful information relevant for the rational design of new σ1 ligands.  相似文献   
10.
Molecular docking and pharmacophore model approaches were used to characterise the binding features of four different series of Rho kinase (ROCK) inhibitors. Docking simulation of 20 inhibitors with ROCK was performed. The binding conformations and binding affinities of these inhibitors were obtained using AutoDock 4.0 software. The predicted binding affinities correlate well with the activities of these inhibitors (R 2 = 0.904). 3D pharmacophore models were generated for ROCK based on highly active inhibitors implemented in Catalyst 4.11 program. The best pharmacophore model consists of one hydrogen bond acceptor feature and two hydrophobic features, and they all seemed to be essential for inhibitors in terms of their binding activities. It is anticipated that the findings reported in this paper may provide very useful information for designing new ROCK inhibitors.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号