首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   15篇
  免费   1篇
  2023年   1篇
  2021年   1篇
  2020年   1篇
  2016年   2篇
  2014年   3篇
  2013年   1篇
  2011年   1篇
  2009年   1篇
  2008年   1篇
  2005年   1篇
  2003年   1篇
  2000年   1篇
  1984年   1篇
排序方式: 共有16条查询结果,搜索用时 109 毫秒
1.
Interstitial cell of Cajal-like cells in the upper urinary tract   总被引:5,自引:0,他引:5  
Autorhythmicity in the upper urinary tract (UUT) has long been considered to arise in specialized atypical smooth muscle cells (SMC) predominately situated in the most proximal regions of the pyeloureteric system. These atypical SMC pacemakers have been thought to trigger adjacent electrically-quiescent typical SMC to fire action potentials which allow an influx of Ca2+ and the generation of muscle contraction. More recently, the presence of cells with many of the morphological, electrical and immunohistochemical characteristics of interstitial cells of Cajal (ICC), the pacemaker cells of the gastrointestinal tract, have been located in many regions of both the upper and lower urinary tract. This article reviews the evidence from the literature and from our laboratory supporting a role of both atypical SMC and ICC-like cells in the initiation and propagation of pyeloureteric peristalsis in the UUT. We propose a new model in which there are 2 populations of pacemaker cells, high frequency atypical SMC and lower frequency ICC-like cells, both of which can drive electrically-quiescent typical SMC. The relative presence of these 2 populations of pacemaker cells and the relatively-long refractoriness of typical SMC determines the decreasing frequency of contraction with distance from the renal fornix. In the absence of the proximal pacemaker drive from atypical SMC after pyeloureteral/ureteral obstruction or surgery, ICC-like cell pacemaking provides a compensatory mechanism allowing the ureter to maintain rudimentary peristaltic waves and movement of urine from the pyelon towards the bladder.  相似文献   
2.
The discovery that machaeridians (class Machaeridia Withers, 1926) are annelids allows their mode of locomotion to be interpreted in the context of the body plan of this phylum. The Plumulitidae were errant epibenthic forms, moving with parapodia. The body of Turrilepadidae and Lepidocoleidae, however, was enclosed largely within the mineralized plates that make up the skeleton. Articulated specimens indicate that these machaeridians were able to burrow like other annelids using peristaltic locomotion. A lepidocoleid specimen indicates that multiple waves of shortened and contracted regions moved over the body. This is in contrast to the mode of locomotion in earthworms and most polychaetes, but similar to peristaltic progression in Polyphysia (Scalibregmidae). Either the rugose sculpture (turrilepadids) and/or the margins of the overlapping shell plates functioned as a burrowing sculpture, allowing forward movement but preventing backwards slipping. A trace from the Devonian Hunsrück Slate associated with a lepidocoleid indicates that considerable flexing of the skeleton was possible, but this is an escape trace and does not represent normal locomotion. Features of the skeleton of machaeridians are convergent on those of molluscs where the shells likewise function in protection and burrowing.  相似文献   
3.
Recent studies have identified paracrine and endocrine cells in the midgut of larval Drosophila melanogaster as well as midgut and hindgut receptors for multiple neuropeptides implicated in the control of fluid and ion balance. Although the effects of diuretic factors on fluid secretion by isolated Malpighian tubules of D. melanogaster have been examined extensively, relatively little is known about the effects of such factors on gut peristalsis or ion transport across the gut. We have measured the effects of diuretic hormone 31 (DH31), drosokinin and allatostatin A (AST‐A) on both K+ transport and muscle contraction frequency in the isolated gut of larval D. melanogaster. K+ absorption across the gut was measured using K+‐selective microelectrodes and the scanning ion‐selective electrode technique. Allatostatin A (AST‐A; 1 μM) increased K+ absorption across the anterior midgut but reduced K+ absorption across the copper cells and large flat cells of the middle midgut. AST‐A strongly inhibited gut contractions in the anterior midgut but had no effect on contractions of the pyloric sphincter induced by proctolin. DH31 (1 μM) increased the contraction frequency in the anterior midgut, but had no effect on K+ flux across the anterior, middle, or posterior midgut or across the ileum. Drosokinin (1 μM) did not affect either contraction frequency or K+ flux across any of the gut regions examined. Possible functions of AST‐A, DH31, and drosokinin in regulating midgut physiology are discussed.  相似文献   
4.
5.
猫延髓背部微量注射纳洛酮对电针增强胃运动效应的影响   总被引:2,自引:0,他引:2  
利用应变规记录33只急性猫的胃窦部蠕动,同时用双极电极记录其胃电。结果发现,微量注射吗啡(10μg/2μl)于低位延髓背部或电针双侧“足三里”都能引起胃窦部蠕动增强(P<0.01)和部分动物簇状锋电位发放。如果事先向低位延髓背部微量注射纳洛酮(2μg/5μl),则电针“足三里”的增强胃窦部蠕动的效应就不再出现。这些结果提示电针“足三里”引起的胃窦部蠕动增强与脑内阿片样物质释放,及其作用于低位延髓背部的一些神经结构有关。  相似文献   
6.
Abstract

Numerical simulations of ureter peristalsis have been carried out in the past to understand both the flow field and ureter wall mechanics. The main objective of the current investigations is to have a better understanding of the urine transport due to the peristalsis in the ureter, thus making the information helpful for a better treatment and diagnosis of ureteral complications like urine reflux. In the current study, a numerical simulation is performed using a finite-element-based solver with a two-way fully coupled fluid structure interaction approach between the ureter wall and urine. For the first time, the ureter wall is modeled as an anisotropic hyper-elastic material based on experiments performed in previous literature on the human ureter. Peristalsis in the ureter is modeled as a series of isolated boluses. By observing the flow field it is clear that the peristalsis mechanism has a natural tendency to create a backflow as the isolated bolus moves forward. As a result, the urine can flow back from the bladder to the ureter at the ureterovesical (ureter-bladder) junctions, if the one-way valve starts to malfunction.  相似文献   
7.
The locomotion of many soft-bodied animals is driven by the propagation of rhythmic waves of contraction and extension along the body. These waves are classically attributed to globally synchronized periodic patterns in the nervous system embodied in a central pattern generator (CPG). However, in many primitive organisms such as earthworms and insect larvae, the evidence for a CPG is weak, or even non-existent. We propose a neuromechanical model for rhythmically coordinated crawling that obviates the need for a CPG, by locally coupling the local neuro-muscular dynamics in the body to the mechanics of the body as it interacts frictionally with the substrate. We analyse our model using a combination of analytical and numerical methods to determine the parameter regimes where coordinated crawling is possible and compare our results with experimental data. Our theory naturally suggests mechanisms for how these movements might arise in developing organisms and how they are maintained in adults, and also suggests a robust design principle for engineered motility in soft systems.  相似文献   
8.
Peristaltic motion of a non-Newtonian Carreau fluid is analyzed in a curved channel under the long wavelength and low Reynolds number assumptions, as a simulation of digestive transport. The flow regime is shown to be governed by a dimensionless fourth-order, nonlinear, ordinary differential equation subject to no-slip wall boundary conditions. A well-tested finite difference method based on an iterative scheme is employed for the solution of the boundary value problem. The important phenomena of pumping and trapping associated with the peristaltic motion are investigated for various values of rheological parameters of Carreau fluid and curvature of the channel. An increase in Weissenberg number is found to generate a small eddy in the vicinity of the lower wall of the channel, which is enhanced with further increase in Weissenberg number. For shear-thinning bio-fluids (power-law rheological index, n < 1) greater Weissenberg number displaces the maximum velocity toward the upper wall. For shear-thickening bio-fluids, the velocity amplitude is enhanced markedly with increasing Weissenberg number.  相似文献   
9.
Larvae of the greater waxmoth (Galleria mellonella) become paralysed by the venom of the braconid wasp (Habrobracon hebetor) a few minutes after intoxication. The profound neuromuscular paralysis, which may last for several weeks, includes all somatic muscles that are innervated through neuromuscular transmission. The peristaltic contractions of the heart and intestine, which are regulated by the depolarisation potentials of the myocardium or intestinal epithelial muscles, remain unaffected and fully functional. Heartbeat patterns and intestinal pulsations were monitored in the motionless, paralysed larvae by means of advanced electrocardiographic recording methods (contact thermography, pulse-light optocardiography). The records revealed more or less constant cardiac pulsations characterised by 20-25 systolic contractions per minute. The contractions were peristaltically propagated in the forward (anterograde) direction, with a more or less constant speed of 10 mm per second (23-25 °C). Additional electrocardiographic investigations on larvae immobilised by decapitation revealed the autonomic (brain independent) nature of heartbeat regulation. Sectioning performed in the middle of the heart (4th abdominal segment) seriously impaired the pacemaker rhythmicity and slowed down the rate of heartbeat in the anterior sections. By contrast, the functions of the posterior compartments of the disconnected heart remained unaffected. These results confirmed our previous conclusions about the existence of an autonomic, myogenic, pacemaker nodus in the terminal part of an insect heart. They show an analogy to the similar myogenic, sinoatrial or atrioventricular nodi regulating rhythmicity of the human heart. Peristaltic contractions of the intestine also represent a purely myogenic system, which is fully functional in larvae with complete neuromuscular paralysis. Unlike the constant anterograde direction of the heartbeat, intestinal peristaltic waves periodically reversed anterograde and retrograde directions. A possibility that the functional similarity between insect and human hearts may open new avenues in the field of comparative cardiology has been discussed.  相似文献   
10.
To address the functional contributions of capillary chaetae in the maldanid polychaete Clymenella torquata, we compared irrigation efficiency and tube structure for animals with intact and trimmed capillary chaetae. We measured pumping rates for worms before and after they were anaesthetized and subjected either to capillary trimming or mock trimming, i.e. handling without trimming. Worms with trimmed chaetae were significantly less effective at moving water through their tubes than those with intact chaetae. There were no significant differences in the ability of control worms to move water within their tubes. No significant changes in rates of peristalsis were observed among experimental or control groups. These data strongly suggest that body musculature and capillary chaetae work in concert to hold worms in position within tubes during peristaltic pumping. When chaetae are shortened, the body musculature must contract to a greater degree, increasing the functional diameter of the worm to achieve the necessary traction with the tube wall, resulting in less efficient irrigation. We also compared the inner diameters of original field tubes to tubes built by control worms or worms after capillary trimming. The inner diameters of new tubes built by worms with shortened chaetae were larger than their original tubes, while those of both control groups were not. One possible explanation is that the chaetae have a sensory role and shortened chaetae send the false message that the nascent tube walls are farther away than they are, the body contracts in compensation and the tube is widened, however this idea has not been tested.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号