首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   262篇
  免费   9篇
  国内免费   2篇
  273篇
  2023年   3篇
  2022年   4篇
  2021年   2篇
  2019年   3篇
  2018年   5篇
  2017年   4篇
  2016年   4篇
  2015年   5篇
  2014年   10篇
  2013年   30篇
  2012年   6篇
  2011年   12篇
  2010年   9篇
  2009年   18篇
  2008年   14篇
  2007年   23篇
  2006年   13篇
  2005年   10篇
  2004年   10篇
  2003年   12篇
  2002年   4篇
  2001年   4篇
  2000年   2篇
  1999年   12篇
  1998年   6篇
  1997年   4篇
  1996年   1篇
  1995年   9篇
  1994年   2篇
  1993年   1篇
  1992年   2篇
  1991年   1篇
  1990年   3篇
  1989年   1篇
  1985年   2篇
  1984年   5篇
  1983年   3篇
  1982年   2篇
  1981年   1篇
  1979年   1篇
  1978年   2篇
  1976年   3篇
  1975年   3篇
  1974年   2篇
排序方式: 共有273条查询结果,搜索用时 0 毫秒
1.
Acetaldehyde and biogenic aldehydes were used as substrates to investigate the subcellular distribution of aldehyde dehydrogenase activity in autopsied human brain. With 10 microM acetaldehyde as substrate, over 50% of the total activity was found in the mitochondrial fraction and 38% was associated with the cytosol. However, with 4 microM 3,4-dihydroxyphenylacetaldehyde and 10 microM indoleacetaldehyde as substrates, 40-50% of the total activity was found in the soluble fraction, the mitochondrial fraction accounting for only 15-30% of the total activity. These data suggested the presence of distinct aldehyde dehydrogenase isozymes in the different compartments. The mitochondrial and cytosolic fractions were, therefore, subjected to salt fractionation and ion-exchange chromatography to purify further the isozymes present in both fractions. The kinetic data on the partially purified isozymes revealed the presence of a low Km isozyme in both the mitochondria and the cytosol, with Km values for acetaldehyde of 1.7 microM and 10.2 microM, respectively. However, the cytosolic isozyme exhibited lower Km values for the biogenic aldehydes. Both isozymes were activated by Mg2+ and Ca2+ in phosphate buffers (pH 7.4). Also, high Km isozymes were found in the mitochondria and in the microsomes.  相似文献   
2.
When the conditions for detecting proteins by ammoniacal silver staining (B. R. Oakley, D. R. Kirsch, and N. R. Morris (1980) Anal. Biochem. 105, 361-363.) following gel electrophoresis were varied, it was noted that glutaraldehyde pretreatment was necessary for maximal staining, which could not be explained simply as the result of "fixation." Further studies indicated that glutaraldehyde enhancement of protein staining with this silver reagent was probably due to oxidation of the aldehyde groups by silver ions, resulting in metallic silver depositions within the gel which act as nucleation sites for additional metallic silver localization in the protein bands upon the addition of formaldehyde developer. This proposed mechanism is consistent with the Tollen's reaction, as well as some aspects of the photographic process. Consistent with this notion, silver-staining intensities are directly related to mole percentage lysine of various standard proteins.  相似文献   
3.
A HPLC method has been developed to measure phosphatidylcholine (PC) containing reactive carbonyl functions in the sn-acyl residue in order to study processes in which such reactive carbonyls can be formed due to e.g. oxidative fragmentation. The method has been applied to determine PC-bound carbonyls as 2, 4-dinitrophenylhydrazones (DNPH) in plasma of burn patients. Plasma from healthy volunteers served as controls. Additionally, in vitro oxidation experiments (A: plasma, buffer diluted; B: plasma + iron-EDTA complex and C: plasma + iron-EDTA complex + H2O2) have been performed to obtain and to identify 2, 4-dinitrophenylhydrazine derivatizable carbonyl functions in plasma PC. Both, the PC-aldehydes and PC-aldehyde DNPH derivatives were cleavable with phospholipase C. Quantification was based on thin-layer chromatography purified soybean phosphatidylcholine, which was identically oxidized and derivatized as the plasma lipids in vitro.  相似文献   
4.
Intracellular levels of H2O2 in BHK-21 cells are not static but decline progressively with cell growth. Exposure of cells to inhibitors of catalase, or glutathione peroxidase, not only diminishes this decline but also depresses rates of cell proliferation, suggesting important growth regulatory roles for those antioxidant enzymes. Other agents which also diminish the growth-associated decline in intracellular levels of H2O2, such as the superoxide dismutase mimic, copper II—(3,5-diisopropylsalicylate)2, or docosahexaenoic acid, also reduced cell proliferation. In contrast, proliferation can be stimulated by the addition of 1 μM exogenous H2O2 to the culture medium. Under these conditions, however, intracellular levels of H2O2 are unaffected, whereas there is a reduction in intracellular levels of glutathione. It is argued that critical balances between intracellular levels of both H2O2 and glutathione are of significance in relation both to growth stimulation and inhibition. In addition growth stimulatory concentrations of H2O2, whilst initially leading to increased intracellular levels of lipid peroxidation breakdown products, appear to “trigger” their metabolism, possibly through aldehyde dehydrogenase, whose activity is also stimulated by H2O2  相似文献   
5.
Background: Neutrophil extracellular trap (NET) production has been implicated in the pathogenesis of thromboinflammatory conditions such as Sickle Cell Disease (SCD), contributing to heightened risk for ischemic stroke. NETs are catalyzed by the enzyme Peptidyl Arginine Deiminase 4 (PAD4) and neutrophil derived reactive oxygen species (ROS), especially NADPH oxidase (NOX) which interacts with PAD4 and is therefore critical for neutrophil function. However, the role that NOX-dependent ROS and NETs play in the accelerated cerebral microvascular thrombosis associated with thromboinflammatory conditions, such as SCD, has not been fully elucidated and is the aim of this study.Methods: The in-vitro effects of targeting PAD4 and NOX were examined using physiologically relevant NET assays with neutrophils isolated from healthy volunteers (control) and SCD patients. In addition, in-vivo intravascular effects of targeting PAD4 and NOX in the cerebral microcirculation of C57BL/6 and sickle transgenic mice (STM) were assessed using a photoactivation thrombosis model (light/dye) coupled with real-time fluorescence intravital microscopy.Results: We found that targeting PAD4 and NOX in human neutrophils significantly inhibited ionomycin dependent H3cit+ neutrophils. Targeting PAD4 and NOX in-vivo resulted in prolonged blood flow cessation in cerebrovascular arterioles as well as venules. Moreover, we were able to replicate the effects of PAD4 and NOX targeting in a clinical model of accelerated thromboinflammation by increasing blood flow cessation times in cerebral microvessels in STM. These findings concurred with the clinical setting i.e. neutrophils isolated from SCD patients, which possessed an attenuation of H3cit+ neutrophil production on targeting PAD4 and NOX.Conclusions: Taken together, our compelling data suggests that PAD4 and NOX play a significant role in neutrophil driven thromboinflammation. Targeting PAD4 and NOX limits pathological H3cit+ neutrophils, which may further explain attenuation of cerebral thrombosis. Overall, this study presents a viable pre-clinical model of prevention and management of thromboinflammatory complications such as ischemic stroke.  相似文献   
6.
《Free radical research》2013,47(10):1172-1202
Abstract

Lipid peroxidation is recognized to be an important contributor to many chronic diseases, especially those of an inflammatory pathology. In addition to their value as markers of oxidative damage, lipid peroxidation products have also been shown to have a wide variety of biological and cell signalling effects. In view of this, accurate and sensitive methods for the measurement of lipid peroxidation products are essential. Although some assays have been described for many years, improvements in protocols are continually being reported and, with recent advances in instrumentation and technology, highly specialized and informative techniques are increasingly used. This article gives an overview of the most currently used methods and then addresses the recent advances in some specific approaches. The focus is on analysis of oxysterols, F2-isoprostanes and oxidized phospholipids by gas chromatography or liquid chromatography mass spectrometry techniques and immunoassays for the detection of 4-hydroxynonenal.  相似文献   
7.
The Pictet–Spengler (PS) reaction was performed with various types of substrates: H‐Trp‐OMe and dipeptides with N‐terminal Trp as arylethylamine components and Z‐protected amino aldehydes and peptidoaldehydes as carbonyl components. We found that the C‐terminal part of Trp derivatives did not have any influence on the stereoselectivity of the reaction and the results are the same for simple esters of Trp and dipeptides. On the contrary, the selectivity of the PS reaction with peptidoaldehydes with L configuration of the C‐terminus residue is totally different from that obtained with simple L‐amino aldehydes. It allows us to obtain cis stereoisomers, which cannot be isolated from the reaction with amino aldehydes. But the utility of the peptidoaldehydes as substrates for the PS reaction is reduced by the side formation of enamides which decrease the yield of cyclization. Copyright © 2013 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   
8.
Cyanobacterial blooms occur when algal densities exceed baseline population concentrations. Cyanobacteria can produce a large number of secondary metabolites. Odorous metabolites affect the smell and flavor of aquatic animals, whereas bioactive metabolites cause a range of lethal and sub-lethal effects in plants, invertebrates, and vertebrates, including humans. Herein, the bioactivity, chemistry, origin, and biosynthesis of these cyanobacterial secondary metabolites were reviewed. With recent revision of cyanobacterial taxonomy by Anagnostidis and Komárek as part of the Süβwasserflora von Mitteleuropa volumes 19(1–3), names of many cyanobacteria that produce bioactive compounds have changed, thereby confusing readers. The original and new nomenclature are included in this review to clarify the origins of cyanobacterial bioactive compounds.Due to structural similarity, the 157 known bioactive classes produced by cyanobacteria have been condensed to 55 classes. This review will provide a basis for more formal procedures to adopt a logical naming system. This review is needed for efficient management of water resources to understand, identify, and manage cyanobacterial harmful algal bloom impacts.  相似文献   
9.
A highly effective method for the introduction of a formyl group at the anomeric position of pyranosides was developed via enolisation of beta-C-D-glycopyranosylpropan-2-one using thermodynamic conditions then oxidative cleavage of the more substituted double bond. This sequence affords the desired aldehydes that are conveniently protected as aminals for purification and storage and easily regenerated using Dowex resin H+. In this paper, the syntheses of nine differently protected aldehydes derived from d-glucose, d-galactose, lactose and N-acetyl-d-glucosamine are presented. Our strategy proved to be very efficient in most cases excepted in the D-mannose series.  相似文献   
10.
Plants have evolved complex signaling pathways to coordinate responses to developmental and environmental Information. The oxylipin pathway Is one pivotal lipid-based signaling network, composed of several competing branch pathways, that determines the plant's ability to adapt to various stimuli. Activation of the oxyllpln pathway Induces the de novo synthesis of biologically active metabolltes called "oxyllplns". The relative levels of these metabolltes are a distinct indicator of each plant species and determine the ability of plants to adapt to different stimuli. The two major branches of the oxyllpln pathway, allene oxide synthase (AOS) and hydroperoxlde lyase (HPL) are responsible for production of the signaling compounds, jasmonates and aldehydes respectively. Here, we compare and contrast the regulation of AOS and HPL branch pathways In rice and Arabidopsis as model monocotyledonous and dicotyledonous systems. These analyses provide new Insights Into the evolution of JAs and aldehydes signaling pathways, and the complex network of processes responsible for stress adaptations In monocots and dicots.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号