首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   313篇
  免费   10篇
  国内免费   1篇
  2023年   4篇
  2022年   3篇
  2021年   3篇
  2020年   3篇
  2019年   8篇
  2016年   5篇
  2015年   10篇
  2014年   4篇
  2013年   11篇
  2012年   4篇
  2010年   2篇
  2009年   4篇
  2008年   6篇
  2007年   8篇
  2006年   7篇
  2005年   5篇
  2004年   8篇
  2003年   11篇
  2002年   6篇
  2001年   4篇
  2000年   3篇
  1999年   8篇
  1998年   3篇
  1997年   3篇
  1996年   6篇
  1995年   7篇
  1994年   2篇
  1993年   8篇
  1992年   6篇
  1991年   12篇
  1990年   10篇
  1989年   13篇
  1988年   7篇
  1987年   6篇
  1986年   10篇
  1985年   4篇
  1984年   11篇
  1983年   2篇
  1982年   6篇
  1981年   8篇
  1980年   5篇
  1979年   4篇
  1978年   5篇
  1977年   5篇
  1976年   8篇
  1974年   2篇
  1973年   16篇
  1972年   8篇
  1971年   8篇
  1970年   6篇
排序方式: 共有324条查询结果,搜索用时 15 毫秒
1.
Summary The horseradish-peroxidase (HRP) technique was used to visualize the cell bodies of axons projecting to the goldfish pituitary. Following intravenous injections of HRP, HRP reaction products were observed in axons of the rostral pars distalis, proximal pars distalis, neurointermediate lobe, pituitary stalk and in axons coursing from the pituitary into the hypothalamus. HRP-labelled cells in the brain were localized in two regions only — the nucleus preopticus (NPO) pars magnocellularis and pars parvocellularis, and the nucleus lateralis tuberis (NLT) of the hypothalamus. These observations suggest that the NPO and NLT are the source of the neurosecretory innervation of the goldfish pituitary.  相似文献   
2.
In patients suffering from Parkinson's disease (PD), we analyzed correlations between the parameters of contingent negative variation (CNV) and data of variational pulsometry (according to the measurements of R-R ECG intervals). Studies were carried out on 35 patients (group PD), 49 to 74 years old, with the stage of disease of 1.5 to 3.0 according to the Hoehn-Yahr international classification. In the course of CNV recording (i.e., in the state of a certain functional loading), we observed significant negative correlations between the integral magnitude (area) of this potential and indices of variational pulsometry (RMSSD, SDNN, C. var, and HF) that characterize the intensity of parasympathetic (respiratory) influences on the cardiovascular system. In the control group, such correlations were absent. We found significant correlations between the autonomic balance, CNV magnitude, and stage of PD reflecting the level of generalization of the pathological process. In the subgroup of patients with the PD stage 1.5 to 2.0, significant changes in the mean values of indices of parasympathetic influences during recording of the CNV were not observed, while in another subgroup (the PD stage 2.5 to 3.0), these values increased significantly (P < 0.05 and P < 0.01). If the estimates of the PD stage were low, the CNV area demonstrated greater values (P < 0.01). The disturbance of coordination of muscle-to-muscle interactions in the PD group is, probably, an important factor responsible for parasympathetic dysregulation and suppression of the CNV generation. We found positive correlation between the intensity of parasympathetic influences in the course of CNV recording and the level of postural disorders (r = 0.37, P < 0.05). On the contrary, the CNV magnitude demonstrated a negative correlation with the intensity of these disorders (r = −0.36, P < 0.05), as well as with the level of postural instability (r = −0.55, P < 0.001). We hypothesize that alterations of the autonomic balance and the activity of those cerebral structures, which are responsible for the motor readiness, result, to a significant extent, from weakening of the activity of the noradrenergic system due to degenerative processes developing in cells of the locus coeruleus. The impairment of the latter structure, together with degeneration of neurons of the substantia nigra and a decrease in the level of nigro-striatal dopamine, underlies the pathomorphological pattern of PD. Neirofiziologiya/Neurophysiology, Vol. 40, No. 3, pp. 242–253, May–June, 2008.  相似文献   
3.
Summary The innervation of the arteriovenous anastomoses in the dog tongue has been investigated. At the lightmicroscopic level, the vessels were found to be densely supplied with adrenergic and AChE-positive nerve plexuses and less densely with the quinacrine-binding nerve plexus. At the electron-microscopic level, at least two apparently different types of axon profiles were identified: 1) Small vesicle-containing axons, characterized by many small granular vesicles, variable numbers of small clear vesicles and large granular vesicles. Storage of endogenous amines and uptake of exogenous amines into most small granular vesicles and many large granular vesicles was demonstrated. These axons stained only lightly with reaction products for AChE activity and thus seemed to be adrenergic in nature. Some axons contained numerous large granular vesicles, whose cores occasionally stained with uranyl ions; this suggests a co-localization of ATP or peptides as neurotransmitters. 2) Small granular vesicle-free axons, containing small clear vesicles and large granular vesicles in variable ratio. Most cores of these large granular vesicles were heavily stained with uranyl ions. No storage or uptake of amine into the synaptic vesicles was detected. Some axons appeared to be typically cholinergic, some, typically non-adrenergic, noncholinergic, and the rest, intermediate between the two. All axons stained heavily with reaction products for AChE activity, suggesting their cholinergic nature.  相似文献   
4.
Summary The Catecholaminergic innervation of neurons containing growth hormone-releasing factor (GRF) was examined by use of a method which combined either 5-hydroxydopamine (5-OHDA) uptake or autoradiography after intraventricular injection of 3H-noradrenaline with immunocytochemistry for GRF in the same tissue sections at the electron-microscopic level. In the ventrolateral part of the arcuate nucleus of the rat hypothalamus a large number of immunonegative axon terminals were found to make synaptic contact with GRF-like immunoreactive (GRF-LI) cell bodies and processes. 3H-noradrenaline autoradiography or 5-OHDA-labeling combined with GRF immunocytochemistry revealed that axon terminals labeled with 3H-noradrenaline or 5-OHDA make synaptic contact with the GRF-LI nerve cell bodies and processes. These findings indicate that catecholamine-containing neurons innervate GRF neurons to regulate GRF secretion via synapses in the rat arcuate nucleus.  相似文献   
5.
Summary Results from a previous report demonstrate that more than one molecular form of neuropeptide Y-like peptide may be present in the islet organ of the anglerfish (Lophius americanus). Most of the neuropeptide Y-like immunoreactive material was anglerfish peptide YG, which is expressed in a subset of islet cells, whereas an additional neuropeptide Y-like peptide(s) was localized in islet nerves. To learn more about the neuropeptide Y-like peptides in islet nerves, we have employed immunohistochemical and biochemical methods to compare peptides found in anglerfish islets and brain. Using antisera that selectively react with either mammalian forms of neuropeptide Y or with anglerfish peptide YG, subsets of neurons were found in the brain that labelled with only one or the other of the antisera. In separate sections, other neurons that were labelled with either antiserum exhibited similar morphologies. Peptides from brains and islets were subjected to gel filtration and reverse-phase high performance liquid chromatography. Radioimmunoassays employing either the neuropeptide Y or peptide YG antisera were used to examine chromatographic eluates. Immunoreactive peptides having retention times of human neuropeptide Y and porcine neuropeptide Y were identified in extracts of both brain and islets. This indicates that peptides structurally similar to both of these peptides from the neuropeptide Y-pancreatic polypeptide family are expressed in neurons of anglerfish brain and nerve fibers of anglerfish islets. The predominant form of neuropeptide Y-like peptide in islets was anglerfish peptide YG. Neuropeptide Y-immunoreactive peptides from islet extracts that had chromatographic retention times identical to human neuropeptide Y and porcine neuropeptide Y were present in much smaller quantities. These results are consistent with the hypothesis that peptides having significant sequence homology with human neuropeptide Y and porcine neuropeptide Y are present in the nerve fibers that permeate the islet.  相似文献   
6.
Summary The occurrence of neuropeptide Y (NPY), vasoactive intestinal polypeptide (VIP) and peptide histidine isoleucine (PHI) in the sympathetic and parasympathetic innervation of the nasal mucosa was studied in various species including man. A dense network of NPY-immunoreactive (IR) fibres was present around arteries and arterioles in the nasal mucosa of all species studied. NPY was also located in nerves around seromucous glands in pig and guinea-pig, but not in rat, cat and man. The NPY-IR glandular innervation corresponded to about 20% of the NPY content of the nasal mucosa as revealed by remaining NPY content determined by radioimmunoassay after sympathectomy. These periglandular NPY-positive fibres had a distribution similar to the VIP-IR and PHI-IR nerves but not to the noradrenergic markers tyrosine hydroxylase (TH) or dopamine--hydroxylase (DBH). The NPY nerves around glands and some perivascular fibres were not influenced by sympathectomy and probably originated in the sphenopalatine ganglion where NPY-IR and VIP-IR ganglion cells were present. The venous sinusoids were innervated by NPY-positive fibres in all species except the cat. Dense NPY and DBH-positive innervation was seen around thick-walled vessels in the pig nasal mucosa; the latter may represent arterio-venous shunts. Double-labelling experiments using TH and DBH, and surgical sympathectomy revealed that the majority of NPY-IR fibres around blood vessels were probably noradrenergic. The NPY-positive perivascular nerves that remained after sympathectomy in the pig nasal mucosa also contained VIP/PHI-IR. The major nasal blood vessels, i.e. sphenopalatine artery and vein, were also densely innervated by NPY-IR fibres of sympathetic origin. Perivascular VIP-IR fibres were present around small arteries, arterioles, venous sinusoids and arterio-venous shunt vessels of the nasal mucosa whereas major nasal vessels received only single VIP-positive nerves. The trigeminal ganglion of the species studied contained only single TH-IR or VIP-IR but no NPY-positive ganglion cells. It is concluded that NPY in the nasal mucosa is mainly present in perivascular nerves of sympathetic origin. In some species, such as pig, glandular and perivascular parasympathetic nerves, probably of VIP/PHI nature, also contain NPY.  相似文献   
7.
Summary The occurrence and distribution of endocrine cells and nerves were immunohistochemically demonstrated in the gut and rectal gland of the ratfish Chimaera monstrosa (Holocephala). The epithelium of the gut mucosa revealed open-type endocrine cells exhibiting immunoreactivity for serotonin (5HT), gastrin/cholecystokinin (CCK), pancreatic polypeptide (PP)/FMRFamide, somatostatin, glucagon, substance P or gastrin-releasing peptide (GRP). The rectum contained a large number of closed-type endocrine cells in the basal layer of its stratified epithelium; the majority contained 5HT- and GRP-like immunoreactivity in the same cytoplasm, whereas others were immunoreactive for substance P. The rectal gland revealed closed-type endocrine cells located in the collecting duct epithelium. Most of these contained substance P-like immunoreactivity, although some reacted either to antibody against somatostatin or against 5HT. Four types of nerves were identified in the gut and the rectal gland. The nerve cells and fibers that were immunoreactive for vasoactive intestinal peptide (VIP) and GRP formed dense plexuses in the lamina propria, submucosa and muscular layer of the gut and rectal gland. A sparse network of gastrin- and 5HT-immunoreactive nerve fibers was found in the mucosa and the muscular layer of the gut. The present study demonstrated for the first time the occurrence of the closed-type endocrine cells in the mucosa of the rectum and rectal gland of the ratfish. These abundant cells presumably secrete 5HT and/or peptides in response to mechanical stimuli in the gut and the rectal gland. The peptide-containing nerves may be involved in the regulation of secretion by the rectal gland.  相似文献   
8.
Summary The heart of the nudibranch mollusc Archidoris montereyensis is regulated by a small number of powerful effector neurons located in the right pleural and visceral ganglia. Two identifiable neurons in the pleural ganglion, a heart excitor (plHE) and a heart inhibitor (PlHI), are especially important regulators of cardiac function in that low levels of spontaneous activity in either cell significantly alters the amplitude and rate of heart contractions. These neurons have extensive dendritic arbors within the right pleural ganglion and branching axonal processes within the visceral ganglion. The visceral ganglion also contains a heart excitor neuron (VHE) and at least two heart inhibitor neurons (VHI cells), but their influence on cardiac activity is weaker than that of the pleural ganglion cells. All of these heart effector cells appear to be motor neurons with axons that terminate predominately in the atrio-ventricular valve region of the heart via the pericardial nerve. The simplicity and strength of these neuronal connections to the heart of Archidoris make this a favorable preparation for studies of cardiac regulation.Abbreviations Pl HE pleural ganglion heart excitor neuron - Pl HI pleural heart inhibitor neuron - V HE visceral ganglion heart excitor neuron - V HI cells, visceral heart inhibitor neurons - V K visceral kidney excitor neuron - V G visceral gill excitor neuron  相似文献   
9.
Excitation-contraction coupling describes the series of events that begins with propagated action potential on the muscle fiber surface membrane and leads to the twitch contraction of the fiber. The generation of an action potential during excitation requires rapid sequential changes in membrane conductances of Na+, Ca2+, and K+ ions that depend upon the opening and closing of the respective channels. Myotonic disorders are inherited diseases whose clinical manifestations include electrophysiological signs such as increased excitability and delayed relaxation of the muscles after voluntary contraction. All these disorders appears to be due to an abnormality of the muscle itself since they persist after section or blocking of the motor nerve after curarization. Most experimental and clinical data suggest that human myotonia arises from genetically-induced structural and functional alterations of the muscle membrane. The purpose of this article is to focus on the more recent developments in the molecular and pharmacological analysis of cation transporting systems such as ionic channels and (Na+, K+) ATPase in myotonic disorders.Special issue dedicated to Dr. Lawrence Austin.  相似文献   
10.
江连海  沈锷 《生理学报》1985,37(6):503-509
在麻醉的32只猫记录了电刺激颌下腺神经支引起的上涎核平均场电位和单位放电。逆行电刺激颌下腺神经支引起的上涎核平均场电位分布在同侧脑干背面闩部头端5.5—8mm处,与过去的组织学结果大致符合。用微电极在上涎核记录了68个对刺激颌下腺神经支有反应的单位,其中33个单位作了碰撞试验。有9个单位符合逆向反应标准,它们是真正的颌下腺节前神经元,逆行反应的潜伏期为14.4±2.5ms,其轴突传导速度为2.9±0.1m/s。其他不符合逆向反应标准的单位,对刺激颌下腺神经支仍能发生反应,估计多为中间神经元。在一部分单位观察了电刺激舌神经或味觉刺激舌引起的反应。根据这些观察对上涎核内存在复杂神经元回路的可能性作了讨论。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号