首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3952篇
  免费   127篇
  国内免费   39篇
  2023年   35篇
  2022年   44篇
  2021年   60篇
  2020年   66篇
  2019年   87篇
  2018年   67篇
  2017年   47篇
  2016年   55篇
  2015年   52篇
  2014年   295篇
  2013年   333篇
  2012年   179篇
  2011年   355篇
  2010年   282篇
  2009年   258篇
  2008年   246篇
  2007年   286篇
  2006年   250篇
  2005年   227篇
  2004年   169篇
  2003年   140篇
  2002年   155篇
  2001年   34篇
  2000年   13篇
  1999年   23篇
  1998年   26篇
  1997年   25篇
  1996年   20篇
  1995年   19篇
  1994年   18篇
  1993年   14篇
  1992年   16篇
  1991年   18篇
  1990年   8篇
  1989年   7篇
  1986年   6篇
  1985年   19篇
  1984年   24篇
  1983年   23篇
  1982年   10篇
  1981年   16篇
  1980年   15篇
  1979年   8篇
  1978年   14篇
  1977年   12篇
  1976年   7篇
  1975年   9篇
  1974年   7篇
  1973年   6篇
  1972年   7篇
排序方式: 共有4118条查询结果,搜索用时 93 毫秒
1.
Many proteins that can assemble into higher order structures termed amyloids can also concentrate into cytoplasmic inclusions via liquid–liquid phase separation. Here, we study the assembly of human Golgi-Associated plant Pathogenesis Related protein 1 (GAPR-1), an amyloidogenic protein of the Cysteine-rich secretory proteins, Antigen 5, and Pathogenesis-related 1 proteins (CAP) protein superfamily, into cytosolic inclusions in Saccharomyces cerevisiae. Overexpression of GAPR-1-GFP results in the formation GAPR-1 oligomers and fluorescent inclusions in yeast cytosol. These cytosolic inclusions are dynamic and reversible organelles that gradually increase during time of overexpression and decrease after promoter shut-off. Inclusion formation is, however, a regulated process that is influenced by factors other than protein expression levels. We identified N-myristoylation of GAPR-1 as an important determinant at early stages of inclusion formation. In addition, mutations in the conserved metal-binding site (His54 and His103) enhanced inclusion formation, suggesting that these residues prevent uncontrolled protein sequestration. In agreement with this, we find that addition of Zn2+ metal ions enhances inclusion formation. Furthermore, Zn2+ reduces GAPR-1 protein degradation, which indicates stabilization of GAPR-1 in inclusions. We propose that the properties underlying both the amyloidogenic properties and the reversible sequestration of GAPR-1 into inclusions play a role in the biological function of GAPR-1 and other CAP family members.  相似文献   
2.
Apical sodium-dependent bile acid transporter (ASBT) catalyses uphill transport of bile acids using the electrochemical gradient of Na+ as the driving force. The crystal structures of two bacterial homologues ASBTNM and ASBTYf have previously been determined, with the former showing an inward-facing conformation, and the latter adopting an outward-facing conformation accomplished by the substitution of the critical Na+-binding residue glutamate-254 with an alanine residue. While the two crystal structures suggested an elevator-like movement to afford alternating access to the substrate binding site, the mechanistic role of Na+ and substrate in the conformational isomerization remains unclear. In this study, we utilized site-directed alkylation monitored by in-gel fluorescence (SDAF) to probe the solvent accessibility of the residues lining the substrate permeation pathway of ASBTNM under different Na+ and substrate conditions, and interpreted the conformational states inferred from the crystal structures. Unexpectedly, the crosslinking experiments demonstrated that ASBTNM is a monomer protein, unlike the other elevator-type transporters, usually forming a homodimer or a homotrimer. The conformational dynamics observed by the biochemical experiments were further validated using DEER measuring the distance between the spin-labelled pairs. Our results revealed that Na+ ions shift the conformational equilibrium of ASBTNM toward the inward-facing state thereby facilitating cytoplasmic uptake of substrate. The current findings provide a novel perspective on the conformational equilibrium of secondary active transporters.  相似文献   
3.
The 231-residue capsid (CA) protein of human immunodeficiency virus type 1 (HIV-1) spontaneously self-assembles into tubes with a hexagonal lattice that is believed to mimic the surface lattice of conical capsid cores within intact virions. We report the results of solid-state nuclear magnetic resonance (NMR) measurements on HIV-1 CA tubes that provide new information regarding changes in molecular structure that accompany CA self-assembly, local dynamics within CA tubes, and possible mechanisms for the generation of lattice curvature. This information is contained in site-specific assignments of signals in two- and three-dimensional solid-state NMR spectra, conformation-dependent 15N and 13C NMR chemical shifts, detection of highly dynamic residues under solution NMR conditions, measurements of local variations in transverse spin relaxation rates of amide 1H nuclei, and quantitative measurements of site-specific 15N–15N dipole–dipole couplings. Our data show that most of the CA sequence is conformationally ordered and relatively rigid in tubular assemblies and that structures of the N-terminal domain (NTD) and the C-terminal domain (CTD) observed in solution are largely retained. However, specific segments, including the N-terminal β-hairpin, the cyclophilin A binding loop, the inter-domain linker, segments involved in intermolecular NTD–CTD interactions, and the C-terminal tail, have substantial static or dynamical disorder in tubular assemblies. Other segments, including the 310-helical segment in CTD, undergo clear conformational changes. Structural variations associated with curvature of the CA lattice appear to be localized in the inter-domain linker and intermolecular NTD–CTD interface, while structural variations within NTD hexamers, around local 3-fold symmetry axes, and in CTD–CTD dimerization interfaces are less significant.  相似文献   
4.
The synthesis of laminarahexaose is described. NMR studies of several of the intermediates leading to the β-1,3-glucan show anomalously small coupling constants for some of the C-1 hydrogens. An X-ray structure for the protected hexasaccharide shows that the small coupling constants are due to some of the glucopyranose rings adopting a twist-boat conformation. The X-ray studies also explain other unexpected NMR observations.  相似文献   
5.
6.
  1. Download : Download high-res image (63KB)
  2. Download : Download full-size image
Highlights
  • •MS-based clinical assay that accurately determines phospho Rab10 occupancy.
  • •Stable isotope labeled phosphopeptide injected as a standard with endogenous tryptic phospho Rab peptide for accurate ratio determination.
  • •Determination of pRab levels in neutrophils of Parkinson disease patients.
  • •Relevance of pRab levels as marker of PD.
  相似文献   
7.
The TGF-β1-Smad pathway is a well-known negative regulator of muscle growth; however, its potential role in resistance training-induced muscle hypertrophy is not clear. The present study proposed to determine whether and how this pathway may be involved in resistance training-induced muscle hypertrophy. Skeletal muscle samples were collected from the control, trained (RT), control + SB431542 (CITGF), and trained + SB431542 (RTITGF) animals following 3, 5, and 8 weeks of resistance training. Inhibition of the TGF-β1-Smad pathway by SB431542 augmented muscle satellite cells activation, upregulated Akt/mTOR/S6K1 pathway, and attenuated FOXO1 and FOXO3a expression in the CITGF group (all p < .01), thereby causing significant muscle hypertrophy in animals from the CITGF. Resistance training significantly decreased muscle TGF-β1 expression and Smad3 (P-Smad3S423/425) phosphorylation at COOH-terminal residues, augmented Smad2 (P-Smad2-LS245/250/255) and Smad3 (P-Smad3-LSer208) phosphorylation levels at linker sites (all p < .01), and led to a muscle hypertrophy which was unaffected by SB431542, suggesting that the TGF-β1-Smad signaling pathway is involved in resistance training-induced muscle hypertrophy. The effects of inhibiting the TGF-β1-Smad signaling pathway were not additive to the resistance training effects on FOXO1 and FOXO3a expression, muscle satellite cells activation, and the Akt/mTOR/S6K1 pathway. Resistance training effect of satellite cell differentiation was independent of the TGF-β1-Smad signaling pathway. These results suggested that the effect of the TGF-β1-Smad signaling pathway on resistance training-induced muscle hypertrophy can be attributed mainly to its diminished inhibitory effects on satellite cell activation and protein synthesis. Suppressed P-Smad3S423/425 and enhanced P-Smad2-LS245/250/255 and P-Smad3-LSer208 are the molecular mechanisms that link the TGF-β1-Smad signaling pathway to resistance training-induced muscle hypertrophy.  相似文献   
8.
9.
The current induced in a human exposed to radio frequency electric fields has been studied by the use of a stripline, in which whole body exposure to vertical electric fields (3-27 MHz) can be produced. We have examined two different techniques to measure the induced current; parallel plate meters and current probes. When the subject has good connection to the ground, the choice of measurement technique is not crucial, since there are only minor differences in readings between the instruments. But when the subject is wearing shoes and/or standing on a wooden plate, the difference between the instruments increases considerably. The difference can mainly be explained by the capacitive coupling between the parallel plate meters and the ground; therefore, the current probes are preferred when the subject does not have perfect contact with the ground. Since the International Commission on Non-Ionizing Radiation Protection guidelines demand measurements of induced current in humans exposed to radio frequency fields in the range of 10-110 MHz, the importance of finding an appropriate measurement procedure becomes apparent.  相似文献   
10.
The packing of peptide helices in crystals of the leucine-rich decapeptide Boc-Aib-Leu-Aib-Aib-Leu-Leu-Leu-Aib-Leu-Aib-OMe provides an example of ladder-like leucylleucyl interactions between neighboring molecules. The peptide molecule forms a helix with five 5----1 hydrogen bonds and two 4----1 hydrogen bonds near the C terminus. Three head-to-tail NH ... O = C hydrogen bonds between helices form continuous columns of helices in the crystal. The helicial columns associate in an antiparallel fashion, except for the association of Leu ... Leu side chains, which occurs along the diagonal of the cell where the peptide helices are parallel. The peptide, with formula C56H102N10O13, crystallizes in space group P2(1)2(1)2(1) with Z = 4 and cell parameters a = 16.774(3) A, b = 20.032(3) A and c = 20.117(3) A; overall agreement factor R = 10.7% for 2014 data with magnitude of F(obs) greater than 3 sigma (F); resolution 1.0 A.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号