首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   103篇
  免费   14篇
  国内免费   2篇
  2023年   5篇
  2022年   3篇
  2021年   6篇
  2020年   6篇
  2019年   7篇
  2018年   8篇
  2017年   5篇
  2016年   2篇
  2015年   7篇
  2014年   9篇
  2013年   7篇
  2012年   9篇
  2011年   7篇
  2010年   6篇
  2009年   1篇
  2008年   3篇
  2007年   1篇
  2006年   3篇
  2005年   3篇
  2004年   5篇
  2003年   1篇
  2002年   1篇
  2001年   1篇
  2000年   5篇
  1998年   1篇
  1997年   1篇
  1996年   1篇
  1994年   1篇
  1992年   1篇
  1991年   1篇
  1989年   1篇
  1987年   1篇
排序方式: 共有119条查询结果,搜索用时 15 毫秒
1.
Summary This study is concerned with electron-microscopic observations on endocrine or paracrine cells in the fundic gastric mucosa of the bullfrog. Also, an attempt was made to identify the histamine-releasing cells involved in the secretagogue response. At least three distinct endocrine-like cell types were found. The classification is based on the appearance of secretory granules and other organelles, and the relationship of endocrine-like cells with other cells in the tissue. The amphibian endocrine-like cells resemble the ECL, D and EC cells of mammals. Type-I (ECL) cells showed degranulation after repeated stimulation with tetragastrin (TG), acetylcholine (ACh) and K+ depolarizing solution, all of which release histamine.  相似文献   
2.
Primary melanocytes isolated from skin and expanded in culture have been widely used for laboratory research and clinical applications. The conventional method to isolate primary melanocytes from skin usually requires about 3–4 weeks of culture for melanocytes to grow sufficiently to passage. Considering that melanocytes comprise only 3%–7% of epidermal cells in normal human skin, it would be extremely helpful to increase the isolation efficiency and shorten the initial culture time to quickly meet various application needs. Here, we report that adding Y‐27632, a Rho kinase inhibitor, into the initial culture medium for 2 days can dramatically increase the yield of melanocytes. We found that Y‐27632 can promote keratinocyte attachment and survival in the melanocyte culture system, resulting in not only better recovery, but also increased proliferation of melanocytes by a paracrine signaling pathway. More specifically, Y‐27632 significantly induced keratinocyte expression of stem cell factor, which played an important role in enhancing the growth of melanocytes. In summary, Y‐27632 could profoundly enhance the yield of primary melanocytes in the initial culture through paracrine effects on keratinocytes.  相似文献   
3.
The major cellular components of tumor microenvironment, referred to as the cancer stroma, are composed of cancer-associated fibroblasts that support tumor epithelial growth, invasion and therapeutic resistance. Thus when we speak of developing therapies that address tumor heterogeneity it is not only a matter of different mutations within the tumor epithelia. While individual mutations in the stromal compartment are controversial, the heterogeneity in fibroblastic population in a single tumor is not up for debate. Cooperative interaction among heterotypic fibroblasts and tumor cells contribute to cancer progression. Therefore to tackle solid tumors, we need to understand its complex microenvironment. Here we review some seminal developments in the field of tumor microenvironment, mainly focusing on cancer-associated fibroblast.  相似文献   
4.
Human-induced pluripotent stem cell-derived vascular smooth muscle cells (hiPSC-VSMCs) with proangiogenic properties have huge therapeutic potential. While hiPSC-VSMCs have already been utilized for wound healing using a biomimetic collagen scaffold, an in situ forming hydrogel mimicking the native environment of skin offers the promise of hiPSC-VSMC mediated repair and regeneration. Herein, the impact of a collagen type-I-hyaluronic acid (HA) in situ hydrogel cross-linked using a polyethylene glycol-based cross-linker on hiPSC-VSMCs viability and proangiogenic paracrine secretion was investigated. Our study demonstrated increases in cell viability, maintenance of phenotype and proangiogenic growth factor secretion, and proangiogenic activity in response to the conditioned medium. The optimally cross-linked and functionalized collagen type-I/HA hydrogel system developed in this study shows promise as an in situ hiPSC-VSMC carrier system for wound regeneration.  相似文献   
5.
Cardiac hypertrophy is a compensatory response of myocardial tissue upon increased mechanical load. Of the mechanical factors, stretch is rapidly followed by hypertrophic responses. We tried to elucidate the role of angiotensin II (AII), endothelin-1 (ET-1) and transforming growth factor- (TGF-) as autocrine/paracrine mediators of stretch-induced cardiomyocyte hypertrophy. We collected conditioned medium (CM) from stretched cardiomyocytes and from other stretched cardiac cells, such as cardiac fibroblasts, endothelial cells and vascular smooth muscle cells (VSMCs). These CMs were administered to stationary cardiomyocytes with or without an AII type 1 (AT1) receptor antagonist (losartan), an ET-1 type A (ETA) receptor antagonist (BQ610), or anti-TGF- antibodies. By measuring the mRNA levels of the proto-oncogene c-fos and the hypertrophy marker gene atrial natriuretic peptide (ANP), the molecular phenotype of the CM-treated stationary cardiomyocytes was characterized.Our results showed that c-fos and ANP expression in stationary cardiomyocytes was increased by AII release from cardiomyocytes that had been stretched for 60 min. Stretched cardiomyocytes, cardiac fibroblasts and endothelial cells released ET-1 which led to increased c-fos and ANP expression in stationary cardiomyocytes. ET-1 released by stretched VSMCs, and TGF- released by stretched cardiac fibroblasts and endothelial cells, appeared to be paracrine mediators of ANP expression in stationary cardiomyocytes.These results indicate that AII, ET-1 and TGF- (released by cardiac and vascular cell types) act as autocrine/paracrine mediators of stretch-induced cardiomyocyte hypertrophy. Therefore, it is likely that in stretched myocardium the cardiomyocytes, cardiac fibroblasts, endothelial cells and VSMCs take part in intercellular interactions contributing to cardiomyocyte hypertrophy.  相似文献   
6.
Growth factors and hormones may play an autocrine/paracrine role in mechanical stress-induced cardiac hypertrophy. Using an in vitro model of mechanical stress, i.e. stretch of cardiomyocytes and cardiac fibroblasts, we tested the involvement of growth factors and hormones in this process.We found that conditioned medium (CM) derived from 4 h cyclicly (1 Hz) stretched cardiomyocytes increased the rate of protein synthesis in static cardiomyocytes by 8 ± 3%. Moreover, CM derived from 2 h stretched fibroblasts increased the rate of protein synthesis in static fibroblasts as well as in static cardiomyocytes by 8 ± 2 and 6 ± 2%, respectively. Analysis of CM using size-exclusion HPLC showed that cardiomyocytes and fibroblasts released at least three factors with MW 10 kD, their quantities being time-dependently increased by stretch. Subsequent analyses using immunoassays revealed that cardiomyocytes released atrial natriuretic peptide (ANP) and transforming growth factor-beta1 (TGF1) being increased by 45 ± 17 and 21 ± 4% upon 4 h of stretch, respectively. Fibroblasts released TGF1 and very low quantity of endothelin-1 (ET-1). The release of TGF1 was significantly increased by 18 ± 4% after 24 h of stretch in fibroblasts. Both cell types released no detectable amount of angiotensin II (Ang II).In conclusion, upon cyclic stretch cardiomyocytes and fibroblasts secrete growth factors and hormones which induce growth responses in cardiomyocytes and fibroblasts in an autocrine/paracrine way. TGF secreted by cardiomyocytes and fibroblasts, and ANP secreted by cardiomyocytes are likely candidates. We found no evidence for the involvement of Ang II and ET-1 in autocrine/paracrine mechanisms between cardiac cell types.  相似文献   
7.
8.
9.
Abstract. The Porifera represent one of the only two recent nerveless and muscleless metazoan phyla. Nevertheless, sponges provide behavioral, physiological, pharmacological, morphological, and, more recently, an increasing amount of genetic evidence for a paracrine pre-nervous integration system. Although this system might be derived, it allows us to draw conclusions, on the basis of comparative data, about the origin of the nervous system sensu stricto as found in the eumetazoan phyla. The goal of the present review is to compile recent evidence on the sponge integration systems. Based on this framework, new light is also shed on the evolutionary origin of the eumetazoan synaptic nervous systems, which can be regarded to form an evolutionary biochemical continuum with the paracrine signaling system in sponges. Thus, we can assume that the evolutionary transition from a paracrine-dominated, pre-nervous system to an electrochemically dominated, primordial nervous system resulted in part from compartmentalization effects. As intermediate evolutionary stages, regionalized synapse precursor areas might have occurred within pre-nervous cells, which foreshadowed the highly organized synaptic scaffolds present in recent nerve cells of the Eumetazoa.  相似文献   
10.
Patients suffering from heart failure as a result of myocardial infarction are in need of heart transplantation. Unfortunately the number of donor hearts is very low and therefore new therapies are subject of investigation. Cell transplantation therapy upon myocardial infarction is a very promising strategy to replace the dead myocardium with viable cardiomyocytes, smooth muscle cells and endothelial cells, thereby reducing scarring and improving cardiac performance. Despite promising results, resulting in reduced infarct size and improved cardiac function on short term, only a few cells survive the ischemic milieu and are retained in the heart, thereby minimizing long-term effects. Although new capillaries and cardiomyocytes are formed around the infarcted area, only a small percentage of the transplanted cells can be detected months after myocardial infarction. This suggests the stimulation of an endogenous regenerative capacity of the heart upon cell transplantation, resulting from release of growth factor, cytokine and other paracrine molecules by the progenitor cells – the so-called paracrine hypothesis. Here, we focus on a relative new component of paracrine signalling, i.e. exosomes. We are interested in the release and function of exosomes derived from cardiac progenitor cells and studied their effects on the migratory capacity of endothelial cells.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号