首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3254篇
  免费   158篇
  国内免费   175篇
  2023年   63篇
  2022年   88篇
  2021年   93篇
  2020年   110篇
  2019年   136篇
  2018年   128篇
  2017年   81篇
  2016年   76篇
  2015年   92篇
  2014年   188篇
  2013年   350篇
  2012年   124篇
  2011年   157篇
  2010年   138篇
  2009年   154篇
  2008年   133篇
  2007年   166篇
  2006年   141篇
  2005年   116篇
  2004年   79篇
  2003年   78篇
  2002年   94篇
  2001年   78篇
  2000年   69篇
  1999年   67篇
  1998年   35篇
  1997年   31篇
  1996年   22篇
  1995年   44篇
  1994年   36篇
  1993年   30篇
  1992年   47篇
  1991年   33篇
  1990年   20篇
  1989年   15篇
  1988年   18篇
  1987年   20篇
  1986年   17篇
  1985年   38篇
  1984年   53篇
  1983年   21篇
  1982年   30篇
  1981年   23篇
  1980年   14篇
  1979年   10篇
  1978年   3篇
  1977年   10篇
  1976年   8篇
  1975年   3篇
  1971年   2篇
排序方式: 共有3587条查询结果,搜索用时 15 毫秒
1.
A novel biocatalytic reaction of transamidation of non-activated amides with amines is reported. Among 45 different lipolytic and proteolytic enzymes tested, only the lipase from Candida antarcticawas able to catalyze this reaction. The reaction proceeded with up to ca. 80% conversion in anhydrous methyl tert-butyl ether and worked with both N-substituted and unsubstituted amides. The biocatalytic transamidation is an equilibrium process and, therefore, higher conversions to the desired amide were achieved by using increased concentrations of the amine nucleophile.  相似文献   
2.
Rhizomucor miehei lipase (RML) is greatly hyperactivated (around 20‐ to 25‐fold toward small substrates) in the presence of sucrose laurate. Hyperactivation appears to be an intramolecular process because it is very similar for soluble enzymes and covalently immobilized derivatives. The hyperactivated enzyme was immobilized (in the presence of sucrose laurate) on cyanogen bromide‐activated Sepharose (very mild covalent immobilization through the amino terminal residue), on glyoxyl Sepharose (intense multipoint covalent immobilization through the region with the highest amount of Lys residues), and on different anion exchangers (by multipoint anionic exchange through the region with the highest density of negative charges). Covalent immobilization does not promote the fixation of the hyperactivated enzyme, but immobilization on Sepharose Q retains the hyperactivated enzyme even in the absence of a detergent. The hydrolysis of fish oils by these hyperactivated enzyme derivatives was sevenfold faster than by covalently immobilized derivatives and three and a half times faster than by the enzyme hyperactivated on octyl‐Sepharose. The open structure of the hyperactivated lipase is fairly exposed to the medium, and no steric hindrance should interfere with the hydrolysis of large substrates. These new hyperactivated derivatives seem to be more suitable for hydrolysis of oils by RML immobilized inside porous supports. In addition, the hyperactivated derivatives are fairly stable against heat and organic cosolvents. © 2011 American Institute of Chemical Engineers Biotechnol. Prog., 2011  相似文献   
3.
Human pancreatic stellate cells (HPSCs) are an essential stromal component and mediators of pancreatic ductal adenocarcinoma (PDAC) progression. Small extracellular vesicles (sEVs) are membrane-enclosed nanoparticles involved in cell-to-cell communications and are released from stromal cells within PDAC. A detailed comparison of sEVs from normal pancreatic stellate cells (HPaStec) and from PDAC-associated stellate cells (HPSCs) remains a gap in our current knowledge regarding stellate cells and PDAC. We hypothesized there would be differences in sEVs secretion and protein expression that might contribute to PDAC biology. To test this hypothesis, we isolated sEVs using ultracentrifugation followed by characterization by electron microscopy and Nanoparticle Tracking Analysis. We report here our initial observations. First, HPSC cells derived from PDAC tumors secrete a higher volume of sEVs when compared to normal pancreatic stellate cells (HPaStec). Although our data revealed that both normal and tumor-derived sEVs demonstrated no significant biological effect on cancer cells, we observed efficient uptake of sEVs by both normal and cancer epithelial cells. Additionally, intact membrane-associated proteins on sEVs were essential for efficient uptake. We then compared sEV proteins isolated from HPSCs and HPaStecs cells using liquid chromatography–tandem mass spectrometry. Most of the 1481 protein groups identified were shared with the exosome database, ExoCarta. Eighty-seven protein groups were differentially expressed (selected by 2-fold difference and adjusted p value ≤0.05) between HPSC and HPaStec sEVs. Of note, HPSC sEVs contained dramatically more CSE1L (chromosome segregation 1–like protein), a described marker of poor prognosis in patients with pancreatic cancer. Based on our results, we have demonstrated unique populations of sEVs originating from stromal cells with PDAC and suggest that these are significant to cancer biology. Further studies should be undertaken to gain a deeper understanding that could drive novel therapy.  相似文献   
4.
《Cell》2021,184(25):6081-6100.e26
  1. Download : Download high-res image (148KB)
  2. Download : Download full-size image
  相似文献   
5.
In the present study, non‐thermal dielectric barrier discharge (DBD) plasma of induced structural changes of morin resulted in the isolation of one previously undescribed benzofuranone derivative, along with two known compounds. The chemical structures of these degradation products were elucidated by UV, NMR and FAB‐MS spectroscopic analyses. The isolated three compounds showed potent antioxidative activities in two different tests, with IC50 values in the range of 12.9–41.8 μm in the 2,2′‐azino‐bis (3‐ethylbenzothiazoline‐6‐sulfonic acid) (ABTS+) radical scavenging activity, 19.0–71.9 μm for hydroxyl radical scavenging activity test. Furthermore, the new methoxylated benzofuranone exhibited enhancement of inhibitory effects against pancreatic lipase with an IC50 value of 90.7±1.6 μm , when compared to the parent morin. These results suggested that the degradation products isolated from plasma exposed morin might be beneficial for prevention of obesity and related diseases.  相似文献   
6.
Beyond its role as an electron acceptor in aerobic respiration, oxygen is also a key effector of many developmental events. The oxygen‐sensing machinery and the very fabric of cell identity and function have been shown to be deeply intertwined. Here we take a first look at how oxygen might lie at the crossroads of at least two of the major molecular pathways that shape pancreatic development. Based on recent evidence and a thorough review of the literature, we present a theoretical model whereby evolving oxygen tensions might choreograph to a large extent the sequence of molecular events resulting in the development of the organ. In particular, we propose that lower oxygenation prior to the expansion of the vasculature may favour HIF (hypoxia inducible factor)‐mediated activation of Notch and repression of Wnt/β‐catenin signalling, limiting endocrine cell differentiation. With the development of vasculature and improved oxygen delivery to the developing organ, HIF‐mediated support for Notch signalling may decline while the β‐catenin‐directed Wnt signalling is favoured, which would support endocrine cell differentiation and perhaps exocrine cell proliferation/differentiation.  相似文献   
7.
Water-insoluble compounds can be substrates for enzymatic reactions when lipases are immobilized properly and suitable organic solvents are used. In this review, three type of lipase immobilization method and their application to the asymmetric syntheses of complex molecules are described. Lipases immobilized with Celite or synthetic prepolymers such as urethane prepolymer and photo-crosslinkable resin prepolymer have been applied for the kinetic resolution of many kinds of water-insoluble substrate.

Phospholipid-lipase aggregates with ether linkages are novel and have been found to function effectively as immobilized lipases in asymmetric hydrolysis or esterification reactions in water-saturated organic solvent. The phospholipid-lipase aggregates are considered to have a stacked bilayer based on X-ray diffraction analysis structure of the lipid in the crystalline phase.  相似文献   
8.
The cellular energy and biomass demands of cancer drive a complex dynamic between uptake of extracellular FAs and their de novo synthesis. Given that oxidation of de novo synthesized FAs for energy would result in net-energy loss, there is an implication that FAs from these two sources must have distinct metabolic fates; however, hitherto, all FAs have been considered part of a common pool. To probe potential metabolic partitioning of cellular FAs, cancer cells were supplemented with stable isotope-labeled FAs. Structural analysis of the resulting glycerophospholipids revealed that labeled FAs from uptake were largely incorporated to canonical (sn-) positions on the glycerol backbone. Surprisingly, labeled FA uptake also disrupted canonical isomer patterns of the unlabeled lipidome and induced repartitioning of n-3 and n-6 PUFAs into glycerophospholipid classes. These structural changes support the existence of differences in the metabolic fates of FAs derived from uptake or de novo sources and demonstrate unique signaling and remodeling behaviors usually hidden from conventional lipidomics.  相似文献   
9.
Symmetrical dialkyl carbonates and dibenzyl carbonates reacted with various nucleophiles in the presence of Candida antarctica lipase B in organic solvents. For example, reaction of dibutyl and dibenzyl carbonate with an alcohol gave a mixture of the mono- and disubstituted products. Aminolysis, however, afforded only the carbamates, without subsequent reaction to the ureum derivatives. The reaction rates were rather low compared with carboxylic esters; the reactivity increased in the order dimethyl相似文献   
10.
Monoacylglycerol lipase (MAGL) has emerged as an attractive drug target because of its important role in regulating the endocannabinoid 2-arachidonoylglycerol (2-AG) and its hydrolysis product arachidonic acid (AA) in the brain. Herein, we report the discovery of a novel series of diazetidinyl diamide compounds 6 and 10 as potent reversible MAGL inhibitors. In addition to demonstrating potent MAGL inhibitory activity in the enzyme assay, the thiazole substituted diazetidinyl diamides 6d–l and compounds 10 were also effective at increasing 2-AG levels in a brain 2-AG accumulation assay in homogenized rat brain. Furthermore, selected compounds have been shown to achieve good brain penetration after oral administration in an animal study.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号