首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   2篇
  2017年   1篇
  2014年   1篇
  2012年   1篇
  1995年   1篇
  1989年   1篇
排序方式: 共有5条查询结果,搜索用时 109 毫秒
1
1.
The ideal scenario for paleontologists would be for the species they designate to be equivalent to the species recognized for modern animals, in the sense that they were formed as a result of the same evolutionary processes. This would mean, for example, that we could be confident that in combining extant and extinct taxa in phylogenetic analyses we would be dealing with equivalent operational taxonomic units. Notwithstanding the many thousands of pages that have been spent arguing over species concepts, the only concept that has won widespread acceptance for the designation of modern species is Mayr's Biological Species Concept (BSC).1 In fact, whenever we complete a cladistic analysis, we assume reproductive isolation of our terminal taxa because otherwise their similarities could be the product of interbreeding rather than common ancestry. Fundamentally, we all behave as though the BSC is true.  相似文献   
2.
Currently restricted to Southeast Asia and Africa, extant hominoids are the remnants of a group that was much more diverse during the Miocene. Apes initially diversified in Africa during the early Miocene, but by the middle Miocene they extended their geographical range into Eurasia, where they experienced an impressive evolutionary radiation. Understanding the role of Eurasian hominoids in the origin and evolution of the great‐ape‐and‐human clade (Hominidae) is partly hampered by phylogenetic uncertainties, the scarcity and incompleteness of fossil remains, the current restricted diversity of the group, and pervasive homoplasy. Nevertheless, scientific knowledge of the Eurasian hominoid radiation has significantly improved during the last decade. In the case of Western Europe, this has been due to the discovery of new remains from the Vallès‐Penedès Basin (Catalonia, Spain). Here, I review the fossil record of Vallès‐Penedès apes and consider its implications. Although significant disagreements persist among scholars, some important lessons can be learned regarding the evolutionary history of the closest living relatives of humans. © 2012 Wiley Periodicals, Inc.  相似文献   
3.
An isolated petrosal bone belonging to a diminutive primate is reported from Middle Eocene fissure-fills near Shanghuang (southern Jiangsu Province, People's Republic of China), the type locality of several newly described primates (Eosimias sinensis, a basal anthropoid; Adapoides troglodytes, a basal adapinan; Tarsius eocaenus, a congener of extant tarsiers; and Macrotarsius macrorhysis, the first Asian representative of an otherwise exclusively North American genus). Because of its fragmentary condition and unique combination of characters, the Shanghuang petrosal cannot be assigned unambiguously to any of the Shanghuang primate taxa known from dental remains. However, the possibility that the petrosal represents either an adapid or a tarsiid can be dismissed because it lacks defining basicranial apomorphines of these groups. By contrast, the element does present arterial features consistent with its being haplorhine. Deciding between the likeliest candidates for its allocation—Omomyidae and Eosimiidae—is difficult, in part because it is not known what (or even whether) basicranial characters can be used to distinguish these clades. If the Shanghuang petrosal is that of an cosimiid, as both direct and indirect evidence appears to indicate, the following implications emerge: (1) as long suspected on other grounds, anthropoids share a closer evolutionary history with Omomyidae (and Tarsiiformes) than they do with Adapidae (and Strepsirhini); (2) the specialised basicranial anatomy of extant anthropoids and their immediate cladistic relatives is derived from a primitive precursor whose otic morphology was like that of omomyids in most known respects; (3) the evolution of the defining dental and basicranial apomorphies of extant Anthropoidea has been distinctly mosaic in pattern.  相似文献   
4.
Very shortly after the disappearance of the non‐avian dinosaurs, the first mammals that had features similar to those of primates started appearing. These first primitive forms went on to spawn a rich diversity of plesiadapiforms, often referred to as archaic primates. Like many living primates, plesiadapiforms were small arboreal animals that generally ate fruit, insects, and, occasionally, leaves. However, this group lacked several diagnostic features of euprimates. They also had extraordinarily diverse specializations, represented in eleven families and more than 140 species, which, in some cases, were like nothing seen since in the primate order. Plesiadapiforms are known from all three Northern continents, with representatives that persisted until at least 37 million years ago. In this article we provide a summary of the incredible diversity of plesiadapiform morphology and adaptations, reviewing our knowledge of all eleven families. We also discuss the challenges that remain in our understanding of their ecology and evolution.  相似文献   
5.
Gu Yumin 《Human Evolution》1989,4(6):509-514
Two species of fossil gibbon existed in China during the Pleistocene. These wereHylobates concolor andH. hoolock, species still extant in China today. The gibbon's dependence on high canopy forest environments is well known, therefore their presence in the fossil record is reliable environmental indicator. Gibbons were widely distributed throughout southern China during the Pleistocene; however, the southward shift of the northern limit distribution in modern history.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号