首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2966篇
  免费   281篇
  国内免费   106篇
  2024年   6篇
  2023年   125篇
  2022年   142篇
  2021年   213篇
  2020年   160篇
  2019年   198篇
  2018年   176篇
  2017年   103篇
  2016年   127篇
  2015年   121篇
  2014年   180篇
  2013年   234篇
  2012年   126篇
  2011年   152篇
  2010年   118篇
  2009年   137篇
  2008年   149篇
  2007年   151篇
  2006年   119篇
  2005年   77篇
  2004年   85篇
  2003年   82篇
  2002年   65篇
  2001年   47篇
  2000年   40篇
  1999年   25篇
  1998年   27篇
  1997年   23篇
  1996年   27篇
  1995年   13篇
  1994年   16篇
  1993年   14篇
  1992年   10篇
  1991年   11篇
  1990年   6篇
  1989年   8篇
  1988年   12篇
  1987年   2篇
  1986年   2篇
  1985年   8篇
  1984年   5篇
  1983年   5篇
  1982年   3篇
  1981年   1篇
  1980年   2篇
排序方式: 共有3353条查询结果,搜索用时 31 毫秒
1.
《Cell reports》2020,30(4):1152-1163.e4
  1. Download : Download high-res image (170KB)
  2. Download : Download full-size image
  相似文献   
2.
Accurate and complete reporting of study methods, results and interpretation are essential components for any scientific process, allowing end-users to evaluate the internal and external validity of a study. When animals are used in research, excellence in reporting is expected as a matter of continued ethical acceptability of animal use in the sciences. Our primary objective was to assess completeness of reporting for a series of studies relevant to mitigation of pain in neonatal piglets undergoing routine management procedures. Our second objective was to illustrate how authors can report the items in the Reporting guidElines For randomized controLled trials for livEstoCk and food safety (REFLECT) statement using examples from the animal welfare science literature. A total of 52 studies from 40 articles were evaluated using a modified REFLECT statement. No single study reported all REFLECT checklist items. Seven studies reported specific objectives with testable hypotheses. Six studies identified primary or secondary outcomes. Randomization and blinding were considered to be partially reported in 21 and 18 studies, respectively. No studies reported the rationale for sample sizes. Several studies failed to report key design features such as units for measurement, means, standard deviations, standard errors for continuous outcomes or comparative characteristics for categorical outcomes expressed as either rates or proportions. In the discipline of animal welfare science, authors, reviewers and editors are encouraged to use available reporting guidelines to ensure that scientific methods and results are adequately described and free of misrepresentations and inaccuracies. Complete and accurate reporting increases the ability to apply the results of studies to the decision-making process and prevent wastage of financial and animal resources.  相似文献   
3.
4.
《Cell reports》2020,30(5):1530-1541.e4
  1. Download : Download high-res image (102KB)
  2. Download : Download full-size image
  相似文献   
5.
Current issues in fish welfare   总被引:11,自引:0,他引:11  
Human beings may affect the welfare of fish through fisheries, aquaculture and a number of other activities. There is no agreement on just how to weigh the concern for welfare of fish against the human interests involved, but ethical frameworks exist that suggest how this might be approached. Different definitions of animal welfare focus on an animal's condition, on its subjective experience of that condition and/or on whether it can lead a natural life. These provide different, legitimate, perspectives, but the approach taken in this paper is to focus on welfare as the absence of suffering. An unresolved and controversial issue in discussions about animal welfare is whether non‐human animals exposed to adverse experiences such as physical injury or confinement experience what humans would call suffering. The neocortex, which in humans is an important part of the neural mechanism that generates the subjective experience of suffering, is lacking in fish and non‐mammalian animals, and it has been argued that its absence in fish indicates that fish cannot suffer. A strong alternative view, however, is that complex animals with sophisticated behaviour, such as fish, probably have the capacity for suffering, though this may be different in degree and kind from the human experience of this state. Recent empirical studies support this view and show that painful stimuli are, at least, strongly aversive to fish. Consequently, injury or experience of other harmful conditions is a cause for concern in terms of welfare of individual fish. There is also growing evidence that fish can experience fear‐like states and that they avoid situations in which they have experienced adverse conditions. Human activities that potentially compromise fish welfare include anthropogenic changes to the environment, commercial fisheries, recreational angling, aquaculture, ornamental fish keeping and scientific research. The resulting harm to fish welfare is a cost that must be minimized and weighed against the benefits of the activity concerned. Wild fish naturally experience a variety of adverse conditions, from attack by predators or conspecifics to starvation or exposure to poor environmental conditions. This does not make it acceptable for humans to impose such conditions on fish, but it does suggest that fish will have mechanisms to cope with these conditions and reminds us that pain responses are in some cases adaptive (for example, suppressing feeding when injured). In common with all vertebrates, fish respond to environmental challenges with a series of adaptive neuro‐endocrine adjustments that are collectively termed the stress response. These in turn induce reversible metabolic and behavioural changes that make the fish better able to overcome or avoid the challenge and are undoubtedly beneficial, in the short‐term at least. In contrast, prolonged activation of the stress response is damaging and leads to immuno‐suppression, reduced growth and reproductive dysfunction. Indicators associated with the response to chronic stress (physiological endpoints, disease status and behaviour) provide a potential source of information on the welfare status of a fish. The most reliable assessment of well‐being will be obtained by examining a range of informative measures and statistical techniques are available that enable several such measures to be combined objectively. A growing body of evidence tells us that many human activities can harm fish welfare, but that the effects depend on the species and life‐history stage concerned and are also context‐dependent. For example, in aquaculture, adverse effects related to stocking density may be eliminated if good water quality is maintained. At low densities, bad water quality may be less likely to arise whereas social interactions may cause greater welfare problems. A number of key differences between fish and birds and mammals have important implications for their welfare. Fish do not need to fuel a high body temperature, so the effects of food deprivation on welfare are not so marked. For species that live naturally in large shoals, low rather than high densities may be harmful. On the other hand, fish are in intimate contact with their environment through the huge surface area of their gills, so they are vulnerable to poor water quality and water borne pollutants. Extrapolation between taxa is dangerous and general frameworks for ensuring welfare in other vertebrate animals need to be modified before they can be usefully applied to fish. The scientific study of fish welfare is at an early stage compared with work on other vertebrates and a great deal of what we need to know is yet to be discovered. It is clearly the case that fish, though different from birds and mammals, however, are sophisticated animals, far removed from unfeeling creatures with a 15 s memory of popular misconception. A heightened appreciation of these points in those who exploit fish and in those who seek to protect them would go a long way towards improving fish welfare.  相似文献   
6.
7.
8.
9.
Neuropathic pain is a serious physical disabling condition resulting from lesion or dysfunction of the peripheral sensory nervous system. Despite the fact that the mechanisms underlying neuropathic pain are poorly understood, the involvement of voltage-gated calcium (CaV) channels in its pathophysiology has justified the use of drugs that bind the CaV channel α2δ auxiliary subunit, such as gabapentin (GBP), to attain analgesic and anti-allodynic effects in models involving neuronal sensitization and nerve injury. GBP binding to α2δ inhibits nerve injury-induced trafficking of the α1 pore forming subunits of CaV channels, particularly of the N-type, from the cytoplasm to the plasma membrane of pre-synaptic terminals in dorsal root ganglion neurons and dorsal horn spinal neurons. In the search for alternative forms of treatment, in this study we describe the synthesis and pharmacological profile of a GABA derivative, 2-aminoadamantane-1-carboxylic acid (GZ4), which displays a close structure–activity relationship with GBP. Behavioral assessment using von Frey filament stimuli showed that GZ4 treatment reverted mechanical allodynia/hyperalgesia in an animal model of spinal nerve ligation-induced neuropathic pain. In addition, using the patch clamp technique we show that GZ4 treatment significantly decreased whole-cell currents through N-type CaV channels heterologously expressed in HEK-293 cells. Interestingly, the behavioral and electrophysiological time course of GZ4 actions reflects that its mechanism of action is similar but not identical to that of GBP. While GBP actions require at least 24 h and imply uptake of the drug, which suggests that the drug acts mainly intracellularly affecting channels trafficking to the plasma membrane, the faster time course (1–3 h) of GZ4 effects suggests also a direct inhibition of Ca2+ currents acting on cell surface channels.  相似文献   
10.
《Neuron》2020,105(6):1077-1093.e7
Download : Download video (97MB)  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号