首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   19篇
  免费   2篇
  2021年   1篇
  2019年   2篇
  2016年   1篇
  2015年   1篇
  2014年   2篇
  2013年   1篇
  2012年   2篇
  2009年   1篇
  2008年   1篇
  2006年   2篇
  2005年   1篇
  2004年   1篇
  2002年   1篇
  2001年   1篇
  2000年   2篇
  1985年   1篇
排序方式: 共有21条查询结果,搜索用时 218 毫秒
1.
2.
  • 1 A classic biogeographic pattern is the alignment of diploid, tetraploid and hexaploid races of creosote bush (Larrea tridentata) across the Chihuahuan, Sonoran and Mohave Deserts of western North America. We used statistically robust differences in guard cell size of modern plants and fossil leaves from packrat middens to map current and past distributions of these ploidy races since the Last Glacial Maximum (LGM).
  • 2 Glacial/early Holocene (26–10 14C kyr bp or thousands of radiocarbon years before present) populations included diploids along the lower Rio Grande of west Texas, 650 km removed from sympatric diploids and tetraploids in the lower Colorado River Basin of south‐eastern California/south‐western Arizona. Diploids migrated slowly from lower Rio Grande refugia with expansion into the northern Chihuahuan Desert sites forestalled until after ~4.0 14C kyr bp . Tetraploids expanded from the lower Colorado River Basin into the northern limits of the Sonoran Desert in central Arizona by 6.4 14C kyr bp . Hexaploids appeared by 8.5 14C kyr bp in the lower Colorado River Basin, reaching their northernmost limits (~37°N) in the Mohave Desert between 5.6 and 3.9 14C kyr bp .
  • 3 Modern diploid isolates may have resulted from both vicariant and dispersal events. In central Baja California and the lower Colorado River Basin, modern diploids probably originated from relict populations near glacial refugia. Founder events in the middle and late Holocene established diploid outposts on isolated limestone outcrops in areas of central and southern Arizona dominated by tetraploid populations.
  • 4 Geographic alignment of the three ploidy races along the modern gradient of increasingly drier and hotter summers is clearly a postglacial phenomenon, but evolution of both higher ploidy races must have happened before the Holocene. The exact timing and mechanism of polyploidy evolution in creosote bush remains a matter of conjecture.
  相似文献   
3.
A 36,200 cal yr B.P. vegetation history was developed from macrofossils and pollen from 55 packrat middens from 1287 to 1442 m elevation in the Peloncillo Mountains of southeasternmost Arizona, USA. Today, these elevations are dominated by semidesert grassland with a mixture of Chihuahuan and Sonoran Desert shrubs, including an eastern disjunct population of jojoba (Simmondsia chinensis). From 36,200 to 15,410 cal yr B.P., rocky areas just above large, pluvial lakes that occupied what are now dry playas supported Pinus edulis, Juniperus osteosperma, Juniperus cf. coahuilensis, Quercus cf. turbinella and a rich understory of summer-flowering C4 annuals and grasses, indicating abundant summer rains and mild winters. After  15,410 cal yr B.P., P. edulis declined in abundance and disappeared briefly at 13,925 cal yr B.P., coincident with expansion of more xeric species and paleohydrological evidence for regional aridity during the Bølling–Allerød warm interval. P. edulis rebounded briefly during the Younger Dryas at 12,405 cal yr B.P. before disappearing along with other mesic woodland species sometime after 12,100 cal yr B.P. The few middens dating from the early to middle Holocene (10,000–4000 yr B.P.) indicate wetter conditions than today at 7790 cal yr B.P. followed by a general drying trend. The 35 middens from the late Holocene detail the sequential arrival of desertscrub species as vegetation became more modern in character.  相似文献   
4.
Comprehending ecological dynamics requires not only knowledge of modern communities but also detailed reconstructions of ecosystem history. Ancient DNA (aDNA) metabarcoding allows biodiversity responses to major climatic change to be explored at different spatial and temporal scales. We extracted aDNA preserved in fossil rodent middens to reconstruct late Quaternary vegetation dynamics in the hyperarid Atacama Desert. By comparing our paleo‐informed millennial record with contemporary observations of interannual variations in diversity, we show local plant communities behave differentially at different timescales. In the interannual (years to decades) time frame, only annual herbaceous expand and contract their distributional ranges (emerging from persistent seed banks) in response to precipitation, whereas perennials distribution appears to be extraordinarily resilient. In contrast, at longer timescales (thousands of years) many perennial species were displaced up to 1,000 m downslope during pluvial events. Given ongoing and future natural and anthropogenically induced climate change, our results not only provide baselines for vegetation in the Atacama Desert, but also help to inform how these and other high mountain plant communities may respond to fluctuations of climate in the future.  相似文献   
5.
Aim A conspicuous climatic and biogeographical transition occurs at 40–45° N in western North America. This pivot point marks a north–south opposition of wet and dry conditions at interannual and decadal time‐scales, as well as the northern and southern limits of many dominant western plant species. Palaeoecologists have yet to focus on past climatic and biotic shifts along this transition, in part because it requires comparisons across dissimilar records [i.e. pollen from lacustrine sediments to the north and plant macrofossils from woodrat (Neotoma) middens to the south]. To overcome these limitations, we are extending the woodrat‐midden record northward into the lowlands of the central Rocky Mountains. Location Woodrat middens were collected from crevices and rock shelters on south‐facing slopes of Dutch John Mountain (2000–2200 m, 40°57′ N, 109°25′ W), situated on the eastern flanks of the Uinta Mountains in north‐eastern Utah. The site is near the regional limits for Pinus ponderosa, P. edulis, P. contorta, Cercocarpus ledifolius var. intricatus, Abies concolor, Ephedra viridis and other important western species. Methods We analysed pollen and plant macrofossils from the 40,000‐year midden sequence. The middens represent brief, depositional episodes (mostly years to decades). Four middens represent the early to full‐glacial period (40,000–18,000 cal‐yr bp ), eight middens are from the late‐glacial/early Holocene transition (13,500–9000 cal yr bp ), and 33 middens span the mid‐to‐late Holocene (last 7500 years). Temporal density of our Holocene middens (one every c. 210 years) is comparable with typical Holocene pollen sequences from lake sediments. Results Early to full‐glacial assemblages are characterized by low diversity and occurrence of montane conifers (Picea pungens, Pseudotsuga menziesii, P. flexilis, Juniperus communis) absent from the site today. Diversity increases in the late‐glacial samples with the addition of J. scopulorum, J. horizontalis, C. montanus, C. ledifolius var. intricatus and mesic understory species. The coniferous trees and J. communis declined and J. osteosperma appeared during the late‐glacial/Holocene transition. Juniperus osteosperma populations have occupied the site throughout the Holocene. Pinus ponderosa was established by 7500 cal‐yr bp , and has occurred at least locally ever since. Montane conifers and J. horizontalis persisted until c. 5500 cal‐yr bp . The signature events of the late Holocene were the invasions of P. edulis and Ephedra viridis and establishment of pinyon–juniper woodland in the last 800 years. Main conclusions The Dutch John Mountain midden record adds to an emerging picture in which mid‐elevation conifers (P. flexilis, Pseudotsuga menziesii, Picea pungens, J. scopulorum, J. communis) dominated vegetation over a wide area of the Colorado Plateau and adjacent Rocky Mountains. Rather than being fragmented, as often assumed in phylogeographical studies, these species had broader and more‐connected distributions than they do in the region today. Paradoxically, subalpine conifers (Picea engelmannii, A. lasiocarpa) occurred at higher elevations to the south, possibly representing declining precipitation from south to north owing to southward displacement of the polar jet stream. The Dutch John Mountain record displays a series of extinction and invasion events. Most of the extinctions were local in scale; nearly all constituents of fossil midden assemblages occur within a few kilometres of Dutch John Mountain, and some occur at least locally on its slopes. The sole exception is J. horizontalis, which is regionally extinct. In contrast to extinctions, Holocene invasions were regional in scale; J. osteosperma, P. ponderosa, P. edulis and Ephedra viridis immigrated from glacial‐age source populations far to the south.  相似文献   
6.
Abstract: During 2 years of radiotelemetry research on chukars (Alectoris chukar) in western Utah, USA, we found 28% of retrieved radios (n = 78) in rubbish nests of woodrats (Neotoma spp.). Such movement and disturbance of carcasses and radios by woodrats and other species has implications for radiotelemetry studies. We evaluated spatio-temporal movement of 51 radiocollars attached to chukar carcasses in western Utah. Most (80%) carcasses were scavenged within one week and by the end of 3 weeks 25 (50%) had been retrieved from woodrat middens. Scavenging activity can both obscure important clues needed to identify causes of mortality and bias telemetry studies by delaying onset of mortality signals.  相似文献   
7.
Stable carbon and nitrogen isotope ratios in the skeletal elements of both ancient and modern marine species from the Beagle Channel were used to compare the structure of Late Holocene and modern food webs, and predict potential changes as a result of a Sea Surface Temperature (SST) increase in the region. Complementary, ancient and modern shells of limpets and mussels were isotopically analysed to explore changes in the isotopic baseline and compare marine food webs through time after an appropriate correction for baseline shifts. Results confirmed a declining pattern of marine primary productivity during the Late Holocene in the Beagle Channel. In general, the isotopic niches overlapped largely in the ancient food web in comparison to the current marine one, with the exception of that of cormorants (Phalacrocorax sp.). Our data suggest that all the species that have undergone intense human exploitation (Arctocephalus australis, Otaria flavescens and Merluccius sp.) significantly increased their trophic levels. The most important finding of this work was the very high isotopic overlap between snoek (Thyrsites atun) and hake (Merluccius sp.) during the Late Holocene. Increasing SST as a result of global warming could favour the recolonization of the southern South‐Western Atlantic Ocean by snoek from the South‐Eastern Pacific Ocean, with a potential impact on the landings of the economically important Argentine and Austral hake. These findings highlight the relevance of using zooarchaeological remains for providing predictions about marine food webs changes in the near future.  相似文献   
8.
Botanical remains, especially pollen, preserved in dung middens of rock‐dwelling hyraxes (herbivorous mammals belonging to the genus Procavia) have been studied in the Southern African winter‐rainfall area. Seven middens from a single rock shelter on the north‐eastern side of the Cederberg mountain range, Cape Province, are dated by 15 radiocarbon age determinations to between about 19,700 and 1370 yr BP. Plant remains in the middens are mainly fine, partly digested fragments. Identifiable macro‐botanical rests like seeds are scarce, therefore this preliminary investigation is focused on analysis of abundant pollen grains. The results show changes in a Southern Hemisphere equivalent of the Mediterranean macchia vegetation, viz. “fynbos”;. Although “fynbos”; prevailed at the site throughout the studied period, an altitudinal lowering of vegetation belts is indicated during the Last Glacial Maximum, while an increase in arboreal pollen types, especially Dodonea is shown during terminal Pleistocene and Holocene times.  相似文献   
9.
Aim To document the impact of late Quaternary pluvial events on plant movements between the coast and the Andes across the Atacama Desert, northern Chile. Location Sites are located along the lower and upper fringes of absolute desert (1100–2800 m a.s.l.), between the western slope of the Andes and the Coastal Ranges of northern Chile (24–26° S). Methods We collected and individually radiocarbon dated 21 rodent middens. Plant macrofossils (fruits, seeds, flowers and leaves) were identified and pollen content analysed. Midden assemblages afford brief snapshots of local plant communities that existed within the rodents’ limited foraging range during the several years to decades that it took the midden to accumulate. These assemblages were then compared with modern floras to determine the presence of extralocal species and species provenance. Results Five middens span the last glacial period (34–21 ka) and three middens are from the last glacial–interglacial transition (19–11 ka). The remaining 13 middens span the last 7000 years. Coastal hyperarid sites exhibit low taxonomic richness in middens at 19.3, 1.1, 1.0, 0.9, 0.5 ka and a modern sample. Middens are also dominated by the same plants that occur today. In contrast, middens dated to 28.1, 21.3, 17.3, 3.7 and 0.5 ka contain more species, including Andean extralocals. Precordillera middens (c. 2700 m) show a prominent increase in plant macrofossil richness, along with the appearance of Andean extralocals and sedges at 34.5 and 18.9 ka. Six younger middens dated to 6.10.1 ka are similar to the modern local vegetation. Main conclusions Increased species richness and Andean extralocal plants occurred along the current lower fringes of absolute desert during the last glacial–interglacial transition and late Holocene. The absence of soil carbonates indicates the persistence of absolute desert throughout the Quaternary. Colonization by Andean plants could have been accomplished through long‐distance seed dispersal either by animals or floods that originated in the Andes. We postulate that dispersal would have been most frequent during regional pluvial events and associated increases in groundwater levels, forming local wetlands in the absolute desert, and generating large floods capable of crossing the Central Depression.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号