首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
  2009年   1篇
  2003年   1篇
排序方式: 共有2条查询结果,搜索用时 0 毫秒
1
1.
Amber disease of the New Zealand grass grub Costelytra zealandica (Coleoptera: Scarabaeidae) is caused by ingestion of pADAP plasmid carrying isolates of Serratia entomophila or Serratia proteamaculans (Enterobacteriaceae) and causes infected larvae to cease feeding and clear their midgut to a pale amber colour where midgut serine protease activities are virtually eliminated. Using bacterial strains and mutants expressing combinations of the anti-feeding (afp) and gut clearance (sep) gene clusters from pADAP, we manipulated the disease phenotype and demonstrated directly the relationship between gene clusters, phenotype and loss of enzyme activity. Treatment with afp-expressing strains caused cessation of feeding without gut clearance where midgut protease activity was maintained at levels similar to that of healthy larvae. Treatment with strains expressing sep-genes caused gut clearance followed by a virtual elimination of trypsin and chymotrypsin titre in the midgut indicating both the loss of pre-existing enzyme from the lumen and a failure to replenish enzyme levels in this region by secretion from the epithelium. Monitoring of enzymatic activity through the alimentary tract during expression of disease showed that loss of serine protease activity in the midgut was matched by a surge of protease activity in the hindgut and frass pellets, indicating a flushing and elimination of the midgut contents. The blocking of enzyme secretion through amber disease appears to be selective as leucine aminopeptidase and α-amylase were still detected in the midgut of diseased larvae.  相似文献   
2.
Hurst MR  O'Callaghan M  Glare TR 《Plasmid》2003,50(3):213-229
Some strains of the Enterobacteriaceae Serratia entomophila and Serratia proteamaculans cause amber disease in the grass grub, Costelytra zealandica (Coleoptera: Scarabaeidae), an important pasture pest in New Zealand. The genes responsible for this disease reside on a large, 155-kb plasmid designated amber disease-associated plasmid (pADAP). Herein, we report the DNA sequencing of approximately 50 kb upstream and 10 kb downstream of the virulence-encoding region. Based on similarity with proteins in the current databases, and potential ribosome-binding sites, 63 potential ORFs were determined. Eleven of these ORFs belong to a type IV pilus cluster (pilL-V) and a further eight have similarities to the translated products of the plasmid transfer traH-N genes of the plasmid R64. In addition, a degenerate 785-nt direct repeat flanks a 44.7-kb region with the potential to encode three Bacillus subtilis Yee-type proteins, a fimbrial gene cluster, the sep virulence-associated genes and several remnant IS elements.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号