首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   17篇
  免费   1篇
  2022年   1篇
  2015年   1篇
  2014年   1篇
  2013年   1篇
  2011年   1篇
  2010年   1篇
  2009年   1篇
  2005年   2篇
  2004年   1篇
  2003年   1篇
  1999年   1篇
  1997年   1篇
  1994年   2篇
  1990年   1篇
  1984年   1篇
  1978年   1篇
排序方式: 共有18条查询结果,搜索用时 15 毫秒
1.
Pseudomonas sp. strain CF600 is an efficient degrader of phenol and methylsubstituted phenols. These compounds are degraded by the set of enzymes encoded by the plasmid locateddmpoperon. The sequences of all the fifteen structural genes required to encode the nine enzymes of the catabolic pathway have been determined and the corresponding proteins have been purified. In this review the interplay between the genetic analysis and biochemical characterisation of the catabolic pathway is emphasised. The first step in the pathway, the conversion of phenol to catechol, is catalysed by a novel multicomponent phenol hydroxylase. Here we summarise similarities of this enzyme with other multicomponent oxygenases, particularly methane monooxygenase (EC 1.14.13.25). The other enzymes encoded by the operon are those of the well-knownmeta-cleavage pathway for catechol, and include the recently discoveredmeta-pathway enzyme aldehyde dehydrogenase (acylating) (EC 1.2.1.10). The known properties of thesemeta-pathway enzymes, and isofunctional enzymes from other aromatic degraders, are summarised. Analysis of the sequences of the pathway proteins, many of which are unique to themeta-pathway, suggests new approaches to the study of these generally little-characterised enzymes. Furthermore, biochemical studies of some of these enzymes suggest that physical associations betweenmeta-pathway enzymes play an important role. In addition to the pathway enzymes, the specific regulator of phenol catabolism, DmpR, and its relationship to the XylR regulator of toluene and xylene catabolism is discussed.  相似文献   
2.
The organisation and nucleotide sequences coding for the catabolism of benzene, toluene (and xylenes), naphthalene and biphenylvia catechol and the extradiol (meta) cleavage pathway inPseudomonas are reviewed and the various factors which may have played a part in their evolution are considered. The data suggests that the complete pathways have evolved in a modular way probably from at least three elements. The commonmeta pathway operons, downstream from the ferredoxin-like protein adjacent to the gene for catechol 2,3-dioxygenase, are highly homologous and clearly share a common ancestry. This common module may have become fused to a gene or genes the product(s) of which could convert a stable chemical (benzoate, salicylate, toluene, benzene, phenol) to catechol, thus forming the lower pathway operons found in modern strains. The upper pathway operons might then have been acquired as a third module at a later stage thus increasing the catabolic versatility of the host strains.  相似文献   
3.
Covalent modifications to histones play important roles in chromatin dynamics and the regulation of gene expression. The JumonjiC (JmjC)-containing histone demethylases (HDMs) catalyze the demethylation of methylated lysine residues on histone tails. Here we report the development of homogeneous luminescence-based assay methods for measuring the catalytic activity and the binding affinities of peptides to HDMs. The assays use amplified luminescent proximity homogeneous assay (ALPHA) technology, are sensitive and robust, and can be used for small molecule inhibitor screening of HDMs. We have profiled known inhibitors of JMJD2E and demonstrate a correlation between the inhibitor potencies determined by the ALPHA and other types of assays. Although this study focuses on the JMJD2E isoform, the catalytic turnover and binding assays described here can be used in studies on other HDMs. The assays should be useful for the development of small molecule inhibitors selective for HDM isoforms.  相似文献   
4.
5.
The oncometabolite 2-hydroxyglutarate inhibits histone lysine demethylases   总被引:2,自引:0,他引:2  
Mutations in isocitrate dehydrogenases (IDHs) have a gain-of-function effect leading to R(−)-2-hydroxyglutarate (R-2HG) accumulation. By using biochemical, structural and cellular assays, we show that either or both R- and S-2HG inhibit 2-oxoglutarate (2OG)-dependent oxygenases with varying potencies. Half-maximal inhibitory concentration (IC50) values for the R-form of 2HG varied from approximately 25 μM for the histone Nɛ-lysine demethylase JMJD2A to more than 5 mM for the hypoxia-inducible factor (HIF) prolyl hydroxylase. The results indicate that candidate oncogenic pathways in IDH-associated malignancy should include those that are regulated by other 2OG oxygenases than HIF hydroxylases, in particular those involving the regulation of histone methylation.  相似文献   
6.
Mononuclear nonheme-Fe(II)-dependent oxygenases comprise an extended family of oxidising enzymes, of which the 2-oxoglutarate-dependent oxygenases and related enzymes are the largest known subgroup. Recent crystallographic and mechanistic studies have helped to define the overall fold of the 2-oxoglutarate-dependent enzymes and have led to the identification of coordination chemistry closely related to that of other nonheme-Fe(II)-dependent oxygenases, suggesting related mechanisms for dioxygen activation that involve iron-mediated electron transfer.  相似文献   
7.
Enzymes that effect with ease one of the most difficult chemical reactions, hydroxylation of an unfunctionalized alkyl group, are of particular interest because highly reactive intermediates must be produced. A typical example, the hydroxylation of fatty acids in the omega position, is now known to occur widely in nature. The catalysts, which can be called "omega-oxygenases," also insert molecular oxygen into a variety of other substrates at positions removed from activating functional groups, as in steroids, eicosanoids, and numerous drugs and other xenobiotics. Progress in the characterization of bacterial nonheme-iron enzymes, and plant, bacterial, and mammalian P450 cytochromes that catalyze fatty acid omega-oxidation, and evidence for multiple functional oxidants are summarized.  相似文献   
8.
The JmjC-domain-containing 2-oxoglutarate-dependent oxygenases catalyze protein hydroxylation and Nε-methyllysine demethylation via hydroxylation. A subgroup of this family, the JmjC lysine demethylases (JmjC KDMs) are involved in histone modifications at multiple sites. There are conflicting reports as to the substrate selectivity of some JmjC oxygenases with respect to KDM activities. In this study, a panel of modified histone H3 peptides was tested for demethylation against 15 human JmjC-domain-containing proteins. The results largely confirmed known Nε-methyllysine substrates. However, the purified KDM4 catalytic domains showed greater substrate promiscuity than previously reported (i.e., KDM4A was observed to catalyze demethylation at H3K27 as well as H3K9/K36). Crystallographic analyses revealed that the Nε-methyllysine of an H3K27me3 peptide binds similarly to Nε-methyllysines of H3K9me3/H3K36me3 with KDM4A. A subgroup of JmjC proteins known to catalyze hydroxylation did not display demethylation activity. Overall, the results reveal that the catalytic domains of the KDM4 enzymes may be less selective than previously identified. They also draw a distinction between the Nε-methyllysine demethylation and hydroxylation activities within the JmjC subfamily. These results will be of use to those working on functional studies of the JmjC enzymes.  相似文献   
9.
Isopenicillin N synthase (IPNS) catalyzes formation of the β-lactam and thiazolidine rings of isopenicillin N from its linear tripeptide l-δ-(α-aminoadipoyl)-l-cysteinyl-d-valine (ACV) substrate in an iron- and dioxygen (O2)-dependent four-electron oxidation without precedent in current synthetic chemistry. Recent X-ray free-electron laser studies including time-resolved serial femtosecond crystallography show that binding of O2 to the IPNS–Fe(II)–ACV complex induces unexpected conformational changes in α-helices on the surface of IPNS, in particular in α3 and α10. However, how substrate binding leads to conformational changes away from the active site is unknown. Here, using detailed 19F NMR and electron paramagnetic resonance experiments with labeled IPNS variants, we investigated motions in α3 and α10 induced by binding of ferrous iron, ACV, and the O2 analog nitric oxide, using the less mobile α6 for comparison. 19F NMR studies were carried out on singly and doubly labeled α3, α6, and α10 variants at different temperatures. In addition, double electron–electron resonance electron paramagnetic resonance analysis was carried out on doubly spin-labeled variants. The combined spectroscopic and crystallographic results reveal that substantial conformational changes in regions of IPNS including α3 and α10 are induced by binding of ACV and nitric oxide. Since IPNS is a member of the structural superfamily of 2-oxoglutarate-dependent oxygenases and related enzymes, related conformational changes may be of general importance in nonheme oxygenase catalysis.  相似文献   
10.
The three-component naphthalene dioxygenase enzyme system catalyzes the first step in the degradation of naphthalene by Pseudomonas sp. strain NCIB 9816-4. A member of a large family of bacterial Rieske non-heme iron oxygenases, naphthalene dioxygenase is known to oxidize over 60 different aromatic compounds, and many of the products are enantiomerically pure. The crystal structure of the oxygenase component revealed the enzyme to be an α3β3 hexamer and identified the amino acids located near the active site. Site-directed mutagenesis studies have identified the residues involved in electron transfer and those responsible for controlling the regioselectivity and enantioselectivity of the enzyme. The results of these studies suggest that naphthalene dioxygenase can be engineered to catalyze a new and extended range of useful reactions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号