首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12024篇
  免费   942篇
  国内免费   849篇
  2024年   25篇
  2023年   135篇
  2022年   158篇
  2021年   235篇
  2020年   357篇
  2019年   445篇
  2018年   457篇
  2017年   359篇
  2016年   341篇
  2015年   416篇
  2014年   677篇
  2013年   1059篇
  2012年   405篇
  2011年   685篇
  2010年   408篇
  2009年   604篇
  2008年   605篇
  2007年   684篇
  2006年   588篇
  2005年   562篇
  2004年   439篇
  2003年   458篇
  2002年   379篇
  2001年   280篇
  2000年   254篇
  1999年   198篇
  1998年   230篇
  1997年   218篇
  1996年   186篇
  1995年   206篇
  1994年   184篇
  1993年   200篇
  1992年   178篇
  1991年   139篇
  1990年   118篇
  1989年   141篇
  1988年   110篇
  1987年   105篇
  1986年   75篇
  1985年   104篇
  1984年   87篇
  1983年   50篇
  1982年   64篇
  1981年   60篇
  1980年   31篇
  1979年   29篇
  1978年   27篇
  1977年   17篇
  1976年   14篇
  1973年   11篇
排序方式: 共有10000条查询结果,搜索用时 62 毫秒
1.
MPV17 is an integral inner mitochondrial membrane protein, whose loss-of-function is linked to the hepatocerebral form of the mitochondrial-DNA-depletion syndrome, leading to a tissue-specific reduction of mitochondrial DNA and organ failure in infants. Several disease-causing mutations in MPV17 have been identified and earlier studies with reconstituted protein suggest that MPV17 forms a high conductivity channel in the membrane. However, the molecular and structural basis of the MPV17 functionality remain only poorly understood. In order to make MPV17 accessible to high-resolution structural studies, we here present an efficient protocol for its high-level production in E. coli and refolding into detergent micelles. Using biophysical and NMR methods, we show that refolded MPV17 in detergent micelles adopts a compact structure consisting of six membrane-embedded α-helices. Furthermore, we demonstrate that MPV17 forms oligomers in a lipid bilayer that are further stabilized by disulfide-bridges. In line with these findings, MPV17 could only be inserted into lipid nanodiscs of 8–12 nm in diameter if intrinsic cysteines were either removed by mutagenesis or blocked by chemical modification. Using this nanodisc reconstitution approach, we could show that disease-linked mutations in MPV17 abolish its oligomerization properties in the membrane. These data suggest that, induced by oxidative stress, MPV17 can alter its oligomeric state from a properly folded monomer to a disulfide-stabilized oligomeric pore which might be required for the transport of metabolic DNA precursors into the mitochondrial matrix to compensate for the damage caused by reactive oxygen species.  相似文献   
2.
3.
Myoglobin (Mb) is the classic vertebrate oxygen-binding protein present in aerobic striated muscles. It functions principally in oxygen delivery and provides muscle with its characteristic red colour. Members of the Antarctic icefish family (Channichthyidae) are widely thought to be extraordinary for lacking cardiac Mb expression, a fact that has been attributed to their low metabolic rate and unusual evolutionary history. Here, we report that cardiac Mb deficit, associated with pale heart colour, has evolved repeatedly during teleost evolution. This trait affects both gill- and air-breathing species from temperate to tropical habitats across a full range of salinities. Cardiac Mb deficit results from total pseudogenization in three-spined stickleback and is associated with a massive reduction in mRNA level in two species that evidently retain functional Mb. The results suggest that near or complete absence of Mb-assisted oxygen delivery to heart muscle is a common facet of teleost biodiversity, even affecting lineages with notable oxygen demands. We suggest that Mb deficit may affect how different teleost species deal with increased tissue oxygen demands arising under climate change.  相似文献   
4.
《Free radical research》2013,47(1-3):3-10
The role of free radicals and active states of oxygen in human cancer is as yet unresolved. Various lines of evidence provide strong but inferential evidence that free radical reactions can be of crucial importance in certain carcinogenic mechanisms. A central point in considering free radical reactions in carcinogenesis is that human cancer is really a group of highly diverse diseases for which the initial causation and the progression to clinical disease occur through a wide variety of mechanisms. Furthermore, for many human cancers it appears that there are alternate pathways capable of tumor initiation and tumor progression. While for certain of these pathways free radical reactions appear necessary, it is unlikely that there are human cancers for which free radicals, or any other mechanism, are sufficient for the entire processbeginning with the genetic alteration leading to a somatic mutation and eventually resulting in clinically overt disease. It is crucial that we view free radical reactions as aong a panoply of mechanisms leading to human cancer, and consider research about the role of free radicals in cancer as opportunities to prevent the initiation or progression of human cancer.  相似文献   
5.
Paraquat (1,1'-dimethyl-4,4'-bipyridinium), a widely used non-selective herbicide, is a redox cycling agent with adverse effects on dopamine systems. Epidemiological data have shown that exposure to paraquat is one of the several risk factors for Parkinson's disease. We have already shown that cyclo(His-Pro), an endogenous cyclic dipeptide produced by the cleavage of the thyrotropin releasing hormone, has a cytoprotective effect through a mechanism involving Nrf2 activation that decreases production of reactive oxygen species and increases glutathione synthesis. Using primary neuronal cultures and PC12 cells as targets of paraquat neurotoxicity, we addressed whether and how cyclo(His-Pro) causes cellular protective response against paraquat-mediated cell death. We found that cyclo(His-Pro) attenuated reactive oxygen species production, and prevented glutathione depletion by up-regulating Nrf2 gene expression, triggering its nuclear accumulation and activating the expression of heme oxygenase1. These protective effects were abolished by RNA interference-mediated Nrf2 knock down whereas were unaffected by RNA interference-mediated Keap1 knock down. Inhibition of heme oxygenase activity decreased cyclo(His-Pro)-induced neuroprotection. These results suggest that cyclo(His-Pro), acting as a selective activator of the brain modulable Nrf2 pathway, may be a promising candidate as neuroprotective agent that act through induction of phase II genes.  相似文献   
6.
Beyond its role as an electron acceptor in aerobic respiration, oxygen is also a key effector of many developmental events. The oxygen‐sensing machinery and the very fabric of cell identity and function have been shown to be deeply intertwined. Here we take a first look at how oxygen might lie at the crossroads of at least two of the major molecular pathways that shape pancreatic development. Based on recent evidence and a thorough review of the literature, we present a theoretical model whereby evolving oxygen tensions might choreograph to a large extent the sequence of molecular events resulting in the development of the organ. In particular, we propose that lower oxygenation prior to the expansion of the vasculature may favour HIF (hypoxia inducible factor)‐mediated activation of Notch and repression of Wnt/β‐catenin signalling, limiting endocrine cell differentiation. With the development of vasculature and improved oxygen delivery to the developing organ, HIF‐mediated support for Notch signalling may decline while the β‐catenin‐directed Wnt signalling is favoured, which would support endocrine cell differentiation and perhaps exocrine cell proliferation/differentiation.  相似文献   
7.
Cardiovascular and respiratory variables were recorded in the blue crab, Callinectes sapidus, during injury and subsequent autotomy of a chela. Cardiac function and haemolymph flow rates were measured using a pulsed-Doppler flowmeter. Oxygen uptake was recorded using an intermittent flow respirometry system. Crabs reacted to the loss of a chela with a rapid increase in heart rate, which was sustained for 2 h. Stroke volume of the heart also increased after the chela was autotomized. A combined increase in heart rate and stroke volume led to an increase in cardiac output, which was maintained for an hour after the loss of a chela. There was also differential haemolymph perfusion of various structures. There was no change in perfusion of the anterolateral arteries or posterior and anterior aortae, during injury of the chela or subsequent autotomy. Haemolymph flow rates did increase significantly through the sternal artery during injury and immediately following autotomy of the chela. This was at the expense of blood flow to the digestive gland: a sustained decrease in haemolymph flow through the hepatic arteries occurred for 3 h following autotomy. Fine-scale cardiac changes associated with the act of autotomy included a bradycardia and/or associated cardiac pausing before the chela was shed, followed by a subsequent increase in cardiac parameters. Changes in the cardiovascular physiology were paralleled by an increase in oxygen uptake, which was driven by an increased ventilation of the branchial chambers. Although limb loss is a major event, it appears that only acute changes in physiology occur. These may benefit the individual, allowing rapid escape following autotomy with a subsequent return to normal activity.  相似文献   
8.
Results of a comparative study of the sensitivity of the system of respiratory control to increases in the CO2 concentration and the intensity of free-radical processes in young and elderly subjects are described. It is shown that normal (natural) aging is accompanied by a decrease in the sensitivity of the respiratory system to hypercapnic stimulation and a parallel significant decrease in the activity of catalase in the blood of examined subjects. Mechanisms responsible for the modifications of the sensitivity of the system of respiratory control to hypercapnia are discussed; these shifts can be at least partly related to changes in the intensity of production of free radicals observed in elderly subjects. Neirofiziologiya/Neurophysiology, Vol. 40, No. 1, pp. 53–57, January–February, 2008.  相似文献   
9.
1. Metabolism is the fundamental process that powers life. Understanding what drives metabolism is therefore critical to our understanding of the ecology and behaviour of organisms in nature. 2. Metabolic rate generally scales with body size according to a power law. However, considerable unexplained variation in metabolic rate remains after accounting for body mass with scaling functions. 3. We measured resting metabolic rates (oxygen consumption) of 227 field‐caught wolf spiders. Then, we tested for effects of body mass, species, and body condition on metabolic rate. 4. Metabolic rate scales with body mass to the 0.85 power in these wolf spiders, and there are metabolic rate differences between species. After accounting for these factors, residual variation in metabolic rate is related to spider body condition (abdomen:cephalothorax ratio). Spiders with better body condition consume more oxygen. 5. These results indicate that recent foraging history is an important determinant of metabolic rate, suggesting that although body mass and taxonomic identity are important, other factors can provide helpful insights into metabolic rate variation in ecological communities.  相似文献   
10.
The collective redox activities of transition‐metal (TM) cations and oxygen anions have been shown to increase charge storage capacity in both Li‐rich layered and cation‐disordered rock‐salt cathodes. Repeated cycling involving anionic redox is known to trigger TM migration and phase transformation in layered Li‐ and Mn‐rich (LMR) oxides, however, detailed mechanistic understanding on the recently discovered Li‐rich rock‐salt cathodes is largely missing. The present study systematically investigates the effect of oxygen redox on a Li1.3Nb0.3Mn0.4O2 cathode and demonstrates that performance deterioration is directly correlated to the extent of oxygen redox. It is shown that voltage fade and hysteresis begin only after initiating anionic redox at high voltages, which grows progressively with either deeper oxidation of oxygen at higher potential or extended cycling. In contrast to what is reported on layered LMR oxides, extensive TM reduction is observed but phase transition is not detected in the cycled oxide. A densification/degradation mechanism is proposed accordingly which elucidates how a unique combination of extensive chemical reduction of TM and reduced quality of the Li percolation network in cation‐disordered rock‐salts can lead to performance degradation in these newer cathodes with 3D Li migration pathways. Design strategies to achieve balanced capacity and stability are also discussed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号