首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6745篇
  免费   354篇
  国内免费   257篇
  2024年   11篇
  2023年   50篇
  2022年   97篇
  2021年   116篇
  2020年   120篇
  2019年   141篇
  2018年   159篇
  2017年   157篇
  2016年   143篇
  2015年   206篇
  2014年   238篇
  2013年   587篇
  2012年   164篇
  2011年   248篇
  2010年   178篇
  2009年   298篇
  2008年   289篇
  2007年   325篇
  2006年   289篇
  2005年   305篇
  2004年   269篇
  2003年   273篇
  2002年   249篇
  2001年   191篇
  2000年   138篇
  1999年   157篇
  1998年   168篇
  1997年   122篇
  1996年   97篇
  1995年   136篇
  1994年   103篇
  1993年   143篇
  1992年   113篇
  1991年   103篇
  1990年   92篇
  1989年   95篇
  1988年   76篇
  1987年   64篇
  1986年   62篇
  1985年   87篇
  1984年   108篇
  1983年   63篇
  1982年   84篇
  1981年   49篇
  1980年   49篇
  1979年   49篇
  1978年   31篇
  1977年   20篇
  1976年   13篇
  1973年   11篇
排序方式: 共有7356条查询结果,搜索用时 15 毫秒
1.
Matrix metalloproteinases (MMPs) are a family of hydrolytic enzymes that play significant roles in development, morphogenesis, inflammation, and cancer invasion. Endometase (matrilysin 2 or MMP-26) is a putative early biomarker for human carcinomas. The effects of the ionic and nonionic detergents on catalytic activity of endometase were investigated. The hydrolytic activity of endometase was detergent concentration dependent, exhibiting a bell-shaped curve with its maximum activity near the critical micelle concentration (CMC) of nonionic detergents tested. The effect of Brij-35 on human gelatinase B (MMP-9), matrilysin (MMP-7), and membrane-type 1 MMP (MT1-MMP) was further explored. Their maximum catalysis was observed near the CMC of Brij-35 (∼ 90 μM). Their IC50 values were above the CMC. The inhibition mechanism of MMP-7, MMP-9, and MT1-MMP by Brij-35 was a mixed type as determined by Dixon’s plot; however, the inhibition mechanism of endometase was noncompetitive with a Ki value of 240 μM. The catalytic activities of MMPs are influenced by detergents. Monomer of detergents may activate and stabilize MMPs to enhance catalysis, but micelle of detergents may sequester enzyme and block the substrate binding site to impede catalysis. Under physiological conditions, a lipid or membrane microenvironment may regulate enzymatic activity.  相似文献   
2.
Abstract

Microorganisms capable of aerobic respiration on ferrous ions are spread throughout eubacterial and archaebacterial phyla. Phylogenetically distinct organisms were shown to express spectrally distinct redox‐active biomolecules during autotrophic growth on soluble iron. A new iron‐oxidizing eubacterium, designated as strain Funis, was investigated. Strain Funis was judged to be different from other known iron‐oxidizing bacteria on the bases of comparative lipid analyses, 16S rRNA sequence analyses, and cytochrome composition studies. When grown autotrophically on ferrous ions, Funis produced conspicuous levels of a novel acid‐stable, acid‐soluble yellow cytochrome with a distinctive absorbance peak at 579 nm in the reduced state.

Stopped‐flow spectrophotometric kinetic studies were conducted on respiratory chain components isolated from cell‐free extracts of Thiobacillus ferrooxidans. Experimental results were consistent with a model where the primary oxidant of ferrous ions is a highly aggregated c‐type cytochrome that then reduces the periplasmic rusticyanin. The Fe(II)‐dependent, cytochrome c‐catalyzed reduction of the rusticyanin possessed three kinetic properties in common with corresponding intact cells that respire on iron: the same anion specificity, a similar dependence of the rate on the concentration of ferrous ions, and similar rates at saturating concentrations of ferrous ions  相似文献   
3.
Cardiolipin (CL) is a unique dimeric phospholipid that exists almost exclusively in the inner mitochondrial membrane (IMM) in eukaryotic cells. Two chiral carbons and four fatty acyl chains in CL result in a flexible body allowing interactions with respiratory chain complexes and mitochondrial substrate carriers. Due to its high content of unsaturated fatty acids, CL is particularly prone to reactive oxygen species (ROS)-induced oxidative attacks. Under mild mitochondrial damage, CL is redistributed to the outer mitochondrial membrane (OMM) and serves as a recognition signal for dysfunctional mitochondria, which are rapidly sequestered by autophagosomes. However, peroxidation of CL is far greater in response to severe stress than under normal or mild-damage conditions. The accumulation of oxidized CL on the OMM results in recruitment of Bax and formation of the mitochondrial permeability transition pore (MPTP), which releases Cytochrome c (Cyt c) from mitochondria. Over the past decade, the significance of CL in the function of mitochondrial bioenergy has been explored. Moreover, approaches to analyzing CL have become more effective and accurate. In this review, we discuss the unique structural features of CL as well as the current understanding of CL-based molecular mechanisms of mitophagy and apoptosis.  相似文献   
4.
Human PrimPol is a recently discovered bifunctional enzyme that displays DNA template-directed primase and polymerase activities. PrimPol has been implicated in nuclear and mitochondrial DNA replication fork progression and restart as well as DNA lesion bypass. Published evidence suggests that PrimPol is a Mn2+-dependent enzyme as it shows significantly improved primase and polymerase activities when binding Mn2+, rather than Mg2+, as a divalent metal ion cofactor. Consistently, our fluorescence anisotropy assays determined that PrimPol binds to a primer/template DNA substrate with affinities of 29 and 979 nM in the presence of Mn2+ and Mg2+, respectively. Our pre-steady-state kinetic analysis revealed that PrimPol incorporates correct dNTPs with 100-fold higher efficiency with Mn2+ than with Mg2+. Notably, the substitution fidelity of PrimPol in the presence of Mn2+ was determined to be in the range of 3.4 × 10−2 to 3.8 × 10−1, indicating that PrimPol is an error-prone polymerase. Furthermore, we kinetically determined the sugar selectivity of PrimPol to be 57–1800 with Mn2+ and 150–4500 with Mg2+, and found that PrimPol was able to incorporate the triphosphates of two anticancer drugs (cytarabine and gemcitabine), but not two antiviral drugs (emtricitabine and lamivudine).  相似文献   
5.
The potentials of Adansonia digitata root powders (ADRP) for adsorption of Pb2+, Cd2+ and Cu2+ from aqueous solutions was investigated. Physico-chemical analysis of the adsorbent (ADRP) shows that hydroxyl, carbonyl and amino groups were predominant on the surface of the adsorbent. Scanning Electron Microscope (SEM) image revealed its high porosity and irregular pores in the adsorbent while the Energy Dispersive X-ray Spectrum showed the major element with 53.0% Nitrogen, 23.8% carbon, 9.1% calcium, 7.5% potassium and 6.6% magnesium present. The found optimal conditions were: initial concentration of the metal ions = 0.5 mg/L, pH = 5, contact time = 90 min, adsorbent dose = 0.4 g and particle size = 32 µm. Freundlich isotherm showed good fit for the adsorption of Pb2+, Cd2+ and Cu2+. Dubinin-Radushkevich isotherm revealed that the adsorption processes were physisorption Cd(II) and Cu(II) but chemisorption with respect to Pb(II) ions. The kinetics and thermodynamic studies showed that Pseudo-second order and chemisorptions provided the best fit to the experimental data of Pb (II) ions only. Batch desorption result show that desorption in the acidic media for the metal ions were more rapid and over 90% of the metal ions were recovered from the biomass.  相似文献   
6.
The speed and accuracy of protein synthesis are fundamental parameters for understanding the fitness of living cells, the quality control of translation, and the evolution of ribosomes. In this study, we analyse the speed and accuracy of the decoding step under conditions reproducing the high speed of translation in vivo. We show that error frequency is close to 10−3, consistent with the values measured in vivo. Selectivity is predominantly due to the differences in kcat values for cognate and near-cognate reactions, whereas the intrinsic affinity differences are not used for tRNA discrimination. Thus, the ribosome seems to be optimized towards high speed of translation at the cost of fidelity. Competition with near- and non-cognate ternary complexes reduces the rate of GTP hydrolysis in the cognate ternary complex, but does not appreciably affect the rate-limiting tRNA accommodation step. The GTP hydrolysis step is crucial for the optimization of both the speed and accuracy, which explains the necessity for the trade-off between the two fundamental parameters of translation.  相似文献   
7.
8.
9.
Iridoid glycosides are plant defence compounds that are deterrent and/or toxic for unadapted herbivores but are readily sequestered by dietary specialists of different insect orders. Hydrolysis of iridoid glycosides by β‐glucosidase leads to protein denaturation. Insect digestive β‐glucosidases thus have the potential to mediate plant–insect interactions. In the present study, mechanisms associated with iridoid glycoside tolerance are investigated in two closely‐related leaf beetle species (Coleoptera: Chrysomelidae) that feed on iridoid glycoside containing host plants. The polyphagous Longitarsus luridus Scopoli does not sequester iridoid glycosides, whereas the specialist Longitarsus tabidus Fabricius sequesters these compounds from its host plants. To study whether the biochemical properties of their β‐glucosidases correspond to the differences in feeding specialization, the number of β‐glucosidase isoforms and their kinetic properties are compared between the two beetle species. To examine the impact of iridoid glycosides on the β‐glucosidase activity of the generalist, L. luridus beetles are kept on host plants with or without iridoid glycosides. Furthermore, β‐glucosidase activities of both species are examined using an artificial β‐glucosidase substrate and the iridoid glycoside aucubin present in their host plants. Both species have one or two β‐glucosidases with different substrate affinities. Interestingly, host plant use does not influence the specific β‐glucosidase activities of the generalist. Both species hydrolyse aucubin with a much lower affinity than the standard substrate. The neutral pH reduces the β‐glucosidase activity of the specialist beetles by approximately 60% relative to its pH optimum. These low rates of aucubin hydrolysis suggest that the ability to sequester iridoid glycosides has evolved as a key to potentially preventing iridoid glycoside hydrolysis by plant‐derived β‐glucosidases.  相似文献   
10.
The reactions of aliphatic and aromatic amines with reducing sugars are important in both drug stability and synthesis. The formation of glycosylamines in solution, the first step in the Maillard reaction, does not typically cause browning but results in decreased potency and is hence significant from the aspect of drug instability. The purpose of this research was to present (1) unreported ionic equilibria of model reactant (kynurenine), (2) the analytical methods used to characterize and measure reaction products, (3) the kinetic scheme used to measure reaction rates and (4) relevant properties of various reducing sugars that impact the reaction rate in solution. The methods used to identify the reversible formation of two products from the reaction of kynurenine and monosaccharides included LC mass spectrometry, UV spectroscopy, and 1-D and 2-D 1H–1H COSY NMR spectroscopy. Kinetics was studied using a stability-indicating HPLC method. The results indicated the formation of α and β glycosylamines by a pseudo first-order reversible reaction scheme in the pH range of 1–6. The forward reaction was a function of initial glucose concentration but not the reverse reaction. It was concluded that the reaction kinetics and equilibrium concentrations of the glycosylamines were pH-dependent and also a function of the acyclic content of the reacting glucose isomer.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号