首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2870篇
  免费   208篇
  国内免费   145篇
  2023年   29篇
  2022年   40篇
  2021年   57篇
  2020年   72篇
  2019年   73篇
  2018年   72篇
  2017年   59篇
  2016年   68篇
  2015年   86篇
  2014年   111篇
  2013年   167篇
  2012年   85篇
  2011年   84篇
  2010年   78篇
  2009年   97篇
  2008年   107篇
  2007年   129篇
  2006年   145篇
  2005年   124篇
  2004年   114篇
  2003年   109篇
  2002年   94篇
  2001年   69篇
  2000年   72篇
  1999年   84篇
  1998年   71篇
  1997年   54篇
  1996年   53篇
  1995年   52篇
  1994年   74篇
  1993年   59篇
  1992年   58篇
  1991年   70篇
  1990年   54篇
  1989年   74篇
  1988年   54篇
  1987年   42篇
  1986年   47篇
  1985年   54篇
  1984年   45篇
  1983年   34篇
  1982年   28篇
  1981年   29篇
  1980年   12篇
  1979年   14篇
  1978年   4篇
  1977年   4篇
  1976年   5篇
  1975年   2篇
  1950年   1篇
排序方式: 共有3223条查询结果,搜索用时 15 毫秒
1.
1. As for some other spring‐feeding moths, adult flight of Epirrita autumnata (Lepidoptera: Geometridae) occurs in late autumn. Late‐season flight is a result of a prolonged pupal period. Potential evolutionary explanations for this phenological pattern are evaluated. 2. In a laboratory rearing, there was a weak correlation between pupation date and the time of adult emergence. A substantial genetic difference in pupal period was found between two geographic populations. Adaptive evolution of eclosion time can thus be expected. 3. Metabolic costs of a prolonged pupal period were found to be moderate but still of some ecological significance. Pupal mortality is likely to form the main cost of the prolonged pupal period. 4. Mortality rates of adults, exposed in the field, showed a declining temporal trend from late summer to normal eclosion time in autumn. Lower predation pressure on adults may constitute the decisive selective advantage of late‐season flight. It is suggested that ants, not birds, were the main predators responsible for the temporal trend. 5. Egg mortality was estimated to be low; it is thus unlikely that the late adult period is selected for to reduce the time during which eggs are exposed to predators. 6. In a laboratory experiment, oviposition success was maximal at the time of actual flight peak of E. autumnata, however penalties resulting from sub‐optimal timing of oviposition remained limited.  相似文献   
2.
Abstract The parasitoid wasp Trichogramma dendrolimi Matsumura sets the number of progeny allocated to its insect egg hosts according to the duration of its initial transit walk across the host surface. Although cooling the wasp reduces its walking speed, reduced temperature does not affect progeny allocation. By locally heating and cooling the wasps, the initial transit can be thermally uncoupled from the subsequent oviposition. Using this technique we show that the timing of initial transit duration is temperature-dependent. These findings suggest that short interval timing by Trichogramma differs physiologically from the temperature compensated clocks that have been described for other insects.  相似文献   
3.
Variation in copulation duration of Drosophila mojavensisstrains was influenced by both sexes. Males maintained predominant control, as copulation duration of pairs from different strains was more similar to that of the strain from which the male was derived, but female origin also contributed significantly to the duration of copulation. Variation among strains was controlled by genes acting additively in both sexes. The size of both males and females also affected copulation duration. Small males copulated longer on average than large males, while males paired with large females copulated longer than those paired with small females. The importance of copulation duration to fitness was tested by correlation analyses with male size, female size, female remating latency, and number of eggs laid prior to female remating. Longer copulations stimulated earlier oviposition, possibly by increasing accessory gland secretions that are passed by males during copulation.  相似文献   
4.
Anoplophora glabripennis (Motschulsky) (Coleoptera: Cerambycidae: Lamiini) is an invasive wood‐boring beetle with an unusually broad host range and a proven ability to increase its host range as it colonizes new areas and encounters new tree species. The beetle is native to eastern Asia and has become an invasive pest in North America and Europe, stimulating interest in delineating host and non‐host tree species more clearly. When offered a choice among four species of living trees in a greenhouse, adult A. glabripennis fed more on golden‐rain tree (Koelreuteria paniculata Laxmann) and river birch (Betula nigra L.) than on London planetree (Platanus × acerifolia (Aiton) Willdenow) or callery pear (Pyrus calleryana Decaisne). Oviposition rate was highest in golden‐rain tree, but larval mortality was also high and larval growth was slowest in this tree species. Oviposition rate was lowest in callery pear, and larvae failed to survive in this tree species, whether they eclosed from eggs laid in the trees or were manually inserted into the trees. Adult beetles feeding on callery pear had a reduced longevity and females feeding only on callery pear failed to develop any eggs. The resistance of golden‐rain tree against the larvae appears to operate primarily through the physical mechanism of abundant sap flow. The resistance of callery pear against both larvae and adults appears to operate through the chemical composition of the tree, which may include compounds that are toxic or which otherwise interfere with normal growth and development of the beetle. Unlike river birch or London planetree, both golden‐rain tree and callery pear are present in the native range of A. glabripennis and may therefore have developed resistance to the beetle by virtue of exposure to attack during their evolutionary history.  相似文献   
5.
The Rhynchosciara americana C3-22 gene is located in an amplified domain and is developmentally expressed. The aim of the present work was to identify intrinsically bent DNA sites in a segment containing the gene promoter and downstream sequence. The results indicated that this gene is flanked by intrinsically bent DNA sites. Three bent DNA sites (b?3, b?2, and b?1) were localized in the promoter, and one was localized downstream of the gene (b+1). These sites had helical parameters that confirmed the curved structure, as well as segments with left-handed superhelical writhe. In silico analysis of the promoters of four other insect genes, which encode secreted polypeptides, showed that they all had curved structures and similar helical parameters. Correlation with other results indicates that the detected intrinsically bent DNA sites that flank the C3-22 gene might be a consensus feature of the gene structure in the amplified domains.  相似文献   
6.
Because hosts utilized by parasitoids are vulnerable to further oviposition by conspecifics, host guarding benefits female wasps. The present study aims to test whether female adults regulate brood guarding behaviour by host discrimination in a solitary parasitoid Trissolcus semistriatus by presenting an intact or parasitized host egg mass to a female adult. Virgin females without oviposition experience have host discrimination ability, which enables them to adjust the number of eggs laid in the hosts. Mating experience increases superparasitism by female adults, whereas mated females achieve a higher discrimination ability as a result of oviposition experience and show a lower superparasitism rate. As expected, females exhibit brood guard after parasitizing an intact host egg mass, whereas those females visiting a previously parasitized host egg mass, do not. Because the survival of eggs in superparasitized hosts is relatively low, regulating brood guarding behaviour by host discrimination is adaptive for female wasps.  相似文献   
7.
  1. Several animal species are known to distinguish between their own eggs and eggs of unrelated conspecifics. However, the cues involved in this discrimination are often unknown. These cues were studied using the predatory mite Gynaeseius liturivorus Ehara.
  2. Adult females of these predatory mites oviposit in clusters and avoid oviposition close to eggs laid by other females, resulting in reduced cannibalism between offspring. Because predatory mites are blind, it was tested whether volatiles of eggs were used as a cue for egg recognition.
  3. Adult female predatory mites were offered volatile cues of their own eggs and of unrelated conspecific eggs, and females were prevented from contacting the eggs. Predatory mites oviposited closer to their own eggs than to unrelated eggs. This preference was observed even when one own and one unrelated egg were offered as a volatile source.
  4. These results suggest that adult female predatory mites can determine kinship using volatiles released from the eggs.
  相似文献   
8.
Abstract. 1. Female apple maggot (Rhagoletis pomonella Walsh) flies held in field cages usually oviposited in an unparasitized (non-pheromone marked) fruit when it was encountered.
2. Oviposition in a previously parasitized (pheromone marked) fruit depended upon the time since the last oviposition (TSLO) and the percentage of infested fruit encountered during search for oviposition sites.
3. Previous theories of host acceptance suggest that the acceptance or rejection of a host should depend dichotomously on time since last oviposition and the fraction of marked hosts in the last five encounters. The experiments, however, show considerable variability and are thus not consistent with the theory.
4. A new theory for the experiments is introduced. This model involves physiological (egg complement) and informational state variables and leads to intuitive understanding of the experimental results. In particular, the model shows how the plasticity in oviposition site selection may arise from fitness maximizing behaviour. Alternative models are also discussed. All of the models stress the importance of physiological and informational states.  相似文献   
9.
Abstract.  1. Theoretical models predict that ovipositional decisions of parasitoid females should lead to the selection of the most profitable host for parasitoid development. Most parasitoid species have evolved specific adaptations to exploit a single host stage. However, females of the aphid hyperparasitoid Syrphophagous aphidivorus (Mayr) (Hymenoptera: Encyrtidae) display a unique and atypical oviposition behaviour by attacking either primary parasitoid larvae in live aphids, or parasitoid pupae in dead, mummified aphids.
2. In the laboratory, the correlation between host suitability and host preference of S. aphidivorus on the host Aphidius nigripes Ashmead parasitising the aphid Macrosiphum euphorbiae (Thomas) was investigated.
3. The relative suitability of the two host stages was determined by measuring hyperparasitoid fitness parameters (survival, development time, fecundity, sex ratio, and adult size of progeny), and calculating the intrinsic rate of population increase ( r m). Host preference by S. aphidivorus females and the influence of aphid defence behaviour on host selection was also examined.
4. Hyperparasitoid offspring performance was highest when developing from hosts in aphid mummies and females consistently preferred this host to hosts in parasitised aphids. Although aphid defensive behaviour may influence host selection, it was not a determining factor. Ecological and evolutionary processes that might have led to dual oviposition behaviour in S. aphidivorus are discussed.  相似文献   
10.
Summary A simple method for the evolutionary analysis of amino acid sequence data is presented and used to examine whether the number of variable sites (NVS) of a protein is constant during its evolution. The NVSs for hemoglobin and for mitochondrial cytochrome c are each found to be almost constant, and the ratio between the NVSs is close to the ratio between the unit evolutionary periods. This indicates that the substitution rate per variable site is almost uniform for these proteins, as the neutral theory claims. An advantage of the present analysis is that it can be done without knowledge of paleontological divergence times and can be extended to bacterial proteins such as bacterial c-type cytochromes. It is suggested that the NVS of cytochrome c has been almost constant even over the long period (ca. 3.0 billion years) of bacterial evolution but that at least two different substitution rates are necessary to describe the accumulated changes in the sequence. This two clock interpretation is consistent with fossil evidence for the appearance times of photosynthetic bacteria and eukaryotes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号