首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   71篇
  免费   26篇
  国内免费   1篇
  2021年   3篇
  2020年   7篇
  2019年   2篇
  2018年   6篇
  2017年   13篇
  2016年   2篇
  2015年   6篇
  2014年   12篇
  2013年   12篇
  2012年   5篇
  2011年   11篇
  2010年   2篇
  2009年   4篇
  2008年   2篇
  2007年   2篇
  2006年   2篇
  2005年   2篇
  2000年   1篇
  1995年   1篇
  1990年   1篇
  1988年   1篇
  1981年   1篇
排序方式: 共有98条查询结果,搜索用时 15 毫秒
1.
Altitudinal gradients offer valuable study systems to investigate how adaptive genetic diversity is distributed within and between natural populations and which factors promote or prevent adaptive differentiation. The environmental clines along altitudinal gradients tend to be steep relative to the dispersal distance of many organisms, providing an opportunity to study the joint effects of divergent natural selection and gene flow. Temperature is one variable showing consistent altitudinal changes, and altitudinal gradients can therefore provide spatial surrogates for some of the changes anticipated under climate change. Here, we investigate the extent and patterns of adaptive divergence in animal populations along altitudinal gradients by surveying the literature for (i) studies on phenotypic variation assessed under common garden or reciprocal transplant designs and (ii) studies looking for signatures of divergent selection at the molecular level. Phenotypic data show that significant between‐population differences are common and taxonomically widespread, involving traits such as mass, wing size, tolerance to thermal extremes and melanization. Several lines of evidence suggest that some of the observed differences are adaptively relevant, but rigorous tests of local adaptation or the link between specific phenotypes and fitness are sorely lacking. Evidence for a role of altitudinal adaptation also exists for a number of candidate genes, most prominently haemoglobin, and for anonymous molecular markers. Novel genomic approaches may provide valuable tools for studying adaptive diversity, also in species that are not amenable to experimentation.  相似文献   
2.
Unveiling the genetic basis of local adaptation to environmental variation is a major goal in molecular ecology. In rugged landscapes characterized by environmental mosaics, living populations and communities can experience steep ecological gradients over very short geographical distances. In lowland tropical forests, interspecific divergence in edaphic specialization (for seasonally flooded bottomlands and seasonally dry terra firme soils) has been proven by ecological studies on adaptive traits. Some species are nevertheless capable of covering the entire span of the gradient; intraspecific variation for adaptation to contrasting conditions may explain the distribution of such ecological generalists. We investigated whether local divergence happens at small spatial scales in two stands of Eperua falcata (Fabaceae), a widespread tree species of the Guiana Shield. We investigated Single Nucleotide Polymorphisms (SNP) and sequence divergence as well as spatial genetic structure (SGS) at four genes putatively involved in stress response and three genes with unknown function. Significant genetic differentiation was observed among sub‐populations within stands, and eight SNP loci showed patterns compatible with disruptive selection. SGS analysis showed genetic turnover along the gradients at three loci, and at least one haplotype was found to be in repulsion with one habitat. Taken together, these results suggest genetic differentiation at small spatial scale in spite of gene flow. We hypothesize that heterogeneous environments may cause molecular divergence, possibly associated to local adaptation in E. falcata.  相似文献   
3.
Liu et al. (Journal of Biogeography, 2018, 45 :164–176) presented an approach to detect outliers in species distribution data by developing virtual species created using the threshold approach. Meynard et al. (Journal of biogeography, 2019, 46 :2141–2144) raised concerns about this approach stating that ‘using a probabilistic approach … may significantly change results’. Here we provide a new series of simulations using the two approaches and demonstrate that the outlier detection approach based on pseudo species distribution models was still effective when using the probabilistic approach, although the detection rate was lower than when using the threshold approach.  相似文献   
4.
Climate changes on various time scales often shape genetic novelty and adaptive variation in many biotas. We explored molecular signatures of directional selection in populations of the ice goby Leucopsarion petersii inhabiting a unique sea basin, the Sea of Japan, where a wide variety of environments existed in the Pleistocene in relation to shifts in sea level by repeated glaciations. This species consisted of two historically allopatric lineages, the Japan Sea (JS) and Pacific Ocean (PO) lineages, and these have lived under contrasting marine environments that are expected to have imposed different selection regimes caused by past climatic and current oceanographic factors. We applied a limited genome‐scan approach using seven candidate genes for phenotypic differences between two lineages in combination with 100 anonymous microsatellite loci. Neuropeptide Y (NPY) gene, which is an important regulator of food intake and potent orexigenic agent, and three anonymous microsatellites were identified as robust outliers, that is, candidate loci potentially under directional selection, by multiple divergence‐ and diversity‐based outlier tests in comparisons focused on multiple populations of the JS vs. PO lineages. For these outlier loci, populations of the JS lineage had putative signals of selective sweeps. Additionally, real‐time quantitative PCR analysis using fish reared in a common environment showed a higher expression level for NPY gene in the JS lineage. Thus, this study succeeded in identifying candidate genomic regions under selection across populations of the JS lineage and provided evidence for lineage‐specific adaptive evolution in this unique sea basin.  相似文献   
5.
Understanding the environmental parameters that drive adaptation among populations is important in predicting how species may respond to global climatic changes and how gene pools might be managed to conserve adaptive genetic diversity. Here, we used Bayesian FST outlier tests and allele–climate association analyses to reveal two Eucalyptus EST‐SSR loci as strong candidates for diversifying selection in natural populations of a southwestern Australian forest tree, Eucalyptus gomphocephala (Myrtaceae). The Eucalyptus homolog of a CONSTANS‐like gene was an FST outlier, and allelic variation showed significant latitudinal clinal associations with annual and winter solar radiation, potential evaporation, summer precipitation and aridity. A second FST outlier locus, homologous to quinone oxidoreductase, was significantly associated with measures of temperature range, high summer temperature and summer solar radiation, with important implications for predicting the effect of temperature on natural populations in the context of climate change. We complemented these data with investigations into neutral population genetic structure and diversity throughout the species range. This study provides an investigation into selection signatures at gene‐homologous EST‐SSRs in natural Eucalyptus populations, and contributes to our understanding of the relationship between climate and adaptive genetic variation, informing the conservation of both putatively neutral and adaptive components of genetic diversity.  相似文献   
6.
Oaks (Quercus: Fagaceae) commonly interbreed yet retain their morphological, genetic and ecological distinctiveness. Post‐zygotic isolation mechanisms, such as ecologically dependent selection on adaptive loci, may therefore limit introgression. To test this hypothesis, we quantified hybridization and genetic divergence across the contact zone of four red oaks (Quercus section Lobatae) in the Great Lakes region of North America using a suite of 259 amplified fragment length polymorphisms and 27 genic and genomic microsatellite markers. First, we identified hybrids using genetic structure analysis and confirmed the reliability of our assignments via simulations. Then, we identified candidate loci for species maintenance with three complementary tests for selection and obtained partial gene sequences linked to an outlier locus and three other loci. We detected evidence of recent hybridization among all species and considerable gene flow between Q. ellipsoidalis and Q. velutina. Overall, c. 20% of Q. velutina had recent ancestry from Q. ellipsoidalis, whereas nearly 30% of Q. ellipsoidalis had a Q. velutina ancestor. Most loci were negligibly to weakly differentiated among species, but two gene‐linked microsatellites deviated significantly from neutral expectations in multiple, complementary outlier tests. Both outlier loci were located in the same 15‐cM bin on an existing Q. robur linkage map, a region under divergent selection in other oak species. Adaptive loci in this highly differentiated genomic region may contribute to ecological divergence among species and limit introgression.  相似文献   
7.
Genome-wide scans of genetic differentiation between hybridizing taxa can identify genome regions with unusual rates of introgression. Regions of high differentiation might represent barriers to gene flow, while regions of low differentiation might indicate adaptive introgression—the spread of selectively beneficial alleles between reproductively isolated genetic backgrounds. Here we conduct a scan for unusual patterns of differentiation in a mosaic hybrid zone between two mussel species, Mytilus edulis and M. galloprovincialis. One outlying locus, mac-1, showed a characteristic footprint of local introgression, with abnormally high frequency of edulis-derived alleles in a patch of M. galloprovincialis enclosed within the mosaic zone, but low frequencies outside of the zone. Further analysis of DNA sequences showed that almost all of the edulis allelic diversity had introgressed into the M. galloprovincialis background in this patch. We then used a variety of approaches to test the hypothesis that there had been adaptive introgression at mac-1. Simulations and model fitting with maximum-likelihood and approximate Bayesian computation approaches suggested that adaptive introgression could generate a “soft sweep,” which was qualitatively consistent with our data. Although the migration rate required was high, it was compatible with the functioning of an effective barrier to gene flow as revealed by demographic inferences. As such, adaptive introgression could explain both the reduced intraspecific differentiation around mac-1 and the high diversity of introgressed alleles, although a localized change in barrier strength may also be invoked. Together, our results emphasize the need to account for the complex history of secondary contacts in interpreting outlier loci.  相似文献   
8.
We study statistical methods to detect cancer genes that are over- or down-expressed in some but not all samples in a disease group. This has proven useful in cancer studies where oncogenes are activated only in a small subset of samples. We propose the outlier robust t-statistic (ORT), which is intuitively motivated from the t-statistic, the most commonly used differential gene expression detection method. Using real and simulation studies, we compare the ORT to the recently proposed cancer outlier profile analysis (Tomlins and others, 2005) and the outlier sum statistic of Tibshirani and Hastie (2006). The proposed method often has more detection power and smaller false discovery rates. Supplementary information can be found at http://www.biostat.umn.edu/~baolin/research/ort.html.  相似文献   
9.
Recently diverged taxa provide the opportunity to search for the genetic basis of the phenotypes that distinguish them. Genomic scans aim to identify loci that are diverged with respect to an otherwise weakly differentiated genetic background. These loci are candidates for being past targets of selection because they behave differently from the rest of the genome that has either not yet differentiated or that may cross species barriers through introgressive hybridization. Here we use a reduced‐representation genomic approach to explore divergence among six species of southern capuchino seedeaters, a group of recently radiated sympatric passerine birds in the genus Sporophila. For the first time in these taxa, we discovered a small proportion of markers that appeared differentiated among species. However, when assessing the significance of these signatures of divergence, we found that similar patterns can also be recovered from random grouping of individuals representing different species. A detailed demographic inference indicates that genetic differences among Sporophila species could be the consequence of neutral processes, which include a very large ancestral effective population size that accentuates the effects of incomplete lineage sorting. As these neutral phenomena can generate genomic scan patterns that mimic those of markers involved in speciation and phenotypic differentiation, they highlight the need for caution when ascertaining and interpreting differentiated markers between species, especially when large numbers of markers are surveyed. Our study provides new insights into the demography of the southern capuchino radiation and proposes controls to distinguish signal from noise in similar genomic scans.  相似文献   
10.
Adaptation to adverse environmental conditions such as high altitude requires physiological and/or morphological changes. Genome scans provide a means to identify the genetic basis of such adaptations without previous knowledge about the particular genetic variants or traits under selection. In this study, we scanned 3027 amplified fragment length polymorphisms (AFLP) in four populations of the common vole Microtus arvalis for loci associated with local adaptation and high altitude. We investigated voles from two populations at high elevation (~2000 m a.s.l.) representing the upper limit of the altitudinal distribution of the species and two geographically close low-altitude populations (<600 m a.s.l.). Statistical analysis incorporated a new Bayesian F(ST) outlier approach specifically developed for AFLP markers, which considers the intensity of AFLP bands instead of mere presence/absence and allows to derive population-based estimates of allele frequencies and F(IS) values. Computer simulations showed that this approach increases the statistical power of the detection of AFLP markers under selection almost to the power of single nucleotide polymorphism (SNP) data without compromising specificity. Our enhanced genome scan resulted in 20 prime candidate markers for positive selection, which show mostly extremely high allele frequency differences between the low- and high-altitude populations. The comparison of global- and pairwise-enhanced genome scans demonstrated further that very strong selective signatures may also be associated with single populations suggesting the importance of local adaptation in alpine populations of common voles.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号