首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   86篇
  免费   7篇
  2021年   2篇
  2020年   5篇
  2019年   4篇
  2018年   8篇
  2017年   4篇
  2016年   3篇
  2015年   3篇
  2014年   3篇
  2013年   9篇
  2012年   3篇
  2011年   1篇
  2010年   1篇
  2009年   3篇
  2008年   2篇
  2007年   1篇
  2006年   3篇
  2005年   1篇
  2004年   3篇
  2003年   5篇
  2002年   1篇
  2001年   5篇
  2000年   3篇
  1999年   3篇
  1998年   1篇
  1997年   3篇
  1996年   4篇
  1995年   1篇
  1994年   2篇
  1993年   2篇
  1992年   1篇
  1991年   2篇
  1986年   1篇
排序方式: 共有93条查询结果,搜索用时 15 毫秒
1.
Ten strains of filamentous, heterocystous nitrogen-fixing blue-green algae (cyanobacteria) were screened for growth performance and tolerance to temperature, pH, irradiance and salinity, together with their potential as producers of phycobiliprotein pigments. Phycobiliproteins typically accounted for about 50% total cell protein, the prevalent type being C-phycocyanin, followed by alloppycocyanin, with levels of 17 and 11% d.wt, respectively, in some strains of Anabaena and Nostoc. C-phycoerythrin was the major pigment in several Nostoc strains, reaching 10% d.wt. Some strains represent, therefore, excellent sources of one or more phycobiliproteins. All strains tolerated an irradiance of ca 2000 μmol photon m-2 s-1. Anabaena sp. ATCC 33047 and Nostoc sp. (Albufera) exhibited the widest optimum range of both temperature (30–45 and 25–40 °C) and pH (6.5–9.5 and 6.0–9.0) for growth, the former also showing significant salt tolerance. In an outdoor open system, productivity of cultures of two phycoerythrin-rich strains of Nostoc was over 20 g (d.wt) m-2 d-1 during summer. The growth performance of the allophycocyanin-rich Anabaena sp. ATCC 33047 in outdoor semi-continuous culture has been assessed throughout the year. Productivity values under optimized conditions ranged from 9 (winter) to 24 (summer) g (d.wt) m-2 d-1.  相似文献   
2.
Soil ingestion estimates may play a prominent role in exposure estimation for risk assessments involving tightly bound soil contaminants such as dioxin, PCBs, and lead in soil. Since contamination is often localized to specific areas, the relative contribution of ingested soil due to outdoor soil and indoor dust may have a large impact on the risk assessment. This article examines data on 64 preschool children over 2 weeks to estimate the relative contribution of ingested soil from outdoor soil and indoor dust. Four principal methodological approaches are developed and presented to form the estimates, and their relative strengths and weaknesses are discussed.

The four approaches differ in their assumptions and their ability to detail differences in ingestion source. Two approaches (i.e., duration correlation method — approach 1 and group tracer ratio method — approach 2) were used that can only estimate the average ingestion source, where averages are calculated over subjects and weeks. Both of these approaches have sufficient limitations to preclude confidence in the resulting estimates.

The final two approaches (approach 3 — individual tracer ratio method and approach 4 — multiple statistical model method) were able to characterize ingestion source for individual subject‐weeks and offered more plausible estimates of soil ingestion. Greater emphasis is placed on approach 3 since it was biologically plausible and conceptually straightforward. Approach 3 indicated that 49.2% ± 29.2% of the residual fecal tracers were estimated to be of soil origin. These findings, which represent the first quantitative differentiation of soil vs. dust ingestion, have considerable application for a variety of environmental settings requiring exposure assessment.  相似文献   

3.
Perovskite solar cells (PSC) have shown that under laboratory conditions they can compete with established photovoltaic technologies. However, controlled laboratory measurements usually performed do not fully resemble operational conditions and field testing outdoors, with day‐night cycles, changing irradiance and temperature. In this contribution, the performance of PSCs in the rooftop field test, exposed to real weather conditions is evaluated. The 1 cm2 single‐junction devices, with an initial average power conversion efficiency of 18.5% are tracked outdoors in maximum power point over several weeks. In parallel, irradiance and air temperature are recorded, allowing us to correlate outside factors with generated power. To get more insight into outdoor device performance, a comprehensive set of laboratory measurements under different light intensities (10% to 120% of AM1.5) and temperatures is performed. From these results, a low power temperature coefficient of ?0.17% K?1 is extracted in the temperature range between 25 and 85 °C. By incorporating these temperature‐ and light‐dependent PV parameters into the energy yield model, it is possible to correctly predict the generated energy of the devices, thus validating the energy yield model. In addition, degradation of the tested devices can be tracked precisely from the difference between measured and modelled power.  相似文献   
4.
5.
A study of the airborne pollen grains in Nsukka, Nigeria, has been carried out at two different sampling heights (1.8?m and 15?m) from February 1993 to January 1994. Twenty‐six plant families (40 genera) were identified at the lower sampling height, whilst thirty‐eight families (58 genera) were identified at the height of 15?m. A total of nine and eighteen fern spore types were observed at 1.80?m and 15?m, respectively. The quantitative results indicate that the number of pollen observed at 15?m sampling height was statistically different (p<0.05) from that observed at the height of 1.80?m. The analysis of airborne pollen grains indicates three different periods: (1) dry season, (2) rainy season, and (3) late rainy season to early dry season/Harmattan. The highest pollen abundance was recorded during the late rainy season – early dry season/Harmattan followed by that of the dry season. The predominant pollen grains and fern spores trapped at both heights include Poaceae, Casuarina equisetifolia, Milicia excelsa, Elaeis guineensis, Celtis integrifolia, Alchornea cordifolia, Amaranthaceae/Chenopodiaceae, Combretaceae/Melastomataceae, Nephrolepis biserrata, Thelypteris totta, and Dryopteris spp.  相似文献   
6.
The pollen spectra of air and surface soil samples from a rooftop (at 14 m) and from ground level (at 1.6 m) in the suburbs of Vienna (Austria) were compared. Two soil samples and two air samples were taken on four different days to account for possible differences: in winter when no pollination occurred (reference day), in spring during the main flowering of Betula (birch day), in spring/summer during the main flowering of Poaceae (grass day), and in autumn during the main flowering of Ambrosia (ragweed day). Thirty-five different pollen types were used to describe the pollen spectra. Frequencies of certain pollen types reflect a seasonal impact on both the surface soil and air samples and show a similarity between air and soil samples on most of the days. However, the seasonal impact is higher in the air samples and shows a high consistency for ground and rooftop level. Kendall’s tau correlation coefficients further substantiate the similarities of the samples especially for the pollen season days. Exceptions include the winter day when pollination was low and the air samples recorded nearly no pollen at all, and the ragweed day when Ambrosia pollen was abundant in three of four samples but not in the ground surface soil sample. Thus, (1) air and surface pollen samples record similar signals during the pollen season but not during the ragweed and winter season and (2) air and surface pollen samples show the impact of local vegetation also in pollen traps located at different heights.  相似文献   
7.
Prevalence of different species of Penicillium and their concentrations per cubic meter of air were evaluated with the use of Hi-Air sampler system Mark II (Hi-Media Laboratories Ltd., India) in the air of homes (bed-rooms) at four different sites in Nagpur. At each of these sites, air sampling was done fortnightly in triplicate for 2 years duration from June 2000 to May 2002. The sampling was also done in triplicate for the outdoor air in the vicinity of each home on the same day immediately after the indoor sampling was over. The mean concentration of Penicillium colony forming units at four different sites in the indoor air was 32, 46.9, 35 and 35.4 CFU/m3, respectively, whereas in the outdoor air at these same four sites, the mean concentration was 24, 28, 25 and 25.8 CFU/m3 respectively. The Penicillium concentration in the indoor air was found to be higher in winter than in other seasons (ANOVA, p < 0.05). Concentration of Penicillium spp. in intramural environment was always higher than that in extramural environment. Statistically significant difference existed between intramural and extramural environments at all the sites, with maximum difference at a site, which is old crowded area of the city. During the 2-years investigations, 11 species of Penicillium were isolated from the indoor air while nine species were isolated from the air outside the homes. The dominant species of Penicillium in indoor as well as outdoor air were P. citrinum (33.78 and 32.81), P. oxalicum (19.70 and 22.60), and P. chrysogenum (17.64 and 14.50). The percentage of the Penicillium in the indoor air was 10.70 while it was 8.36 in outdoor air. Indoor air showed the presence of P. glaber and P. sclerotiorum, which were absent in the outdoor air.  相似文献   
8.
This study aimed to compare the ability of two Arthrospira platensis (Nordst.) Gomont strains, M2 and Kenya, isolated from two different habitats, to acclimate to low temperature (15°C). Both strains had similar growth rates at 30°C, but once acclimated to low temperature, M2 showed a greater decline in growth (59% vs. 41% in the Kenya strain). We suggest that the Kenya strain acclimated better to low temperature by down‐regulating its photosynthetic activity through (i) decreasing antenna size and thus reducing energy flux into the photosystems; (ii) decreasing reaction center density (RC/CSX) and the performance index, thus decreasing the trapping probability and electron transport rate while maintaining electron transport probability for electron transport beyond QA? unchanged; (iii) increasing the energy dissipation flux. In contrast, the M2 strain showed no difference in antenna size and exhibited a much lower decrease in RC/CSX and a lower dissipation rate. Hence, the Kenya strain minimized potential damage on the acceptor side of PSII compared to the M2 cells. Furthermore, acclimation to low temperature was accompanied by an improved mechanism for handling excess energy resulting in an enhanced ability of the Kenya strain to rapidly repair damaged PSII RCs and withstand a high photon flux density (HPFD) stress; this finding might be defined as a cross‐adaptation phenomenon. This study may provide a tool to identify strains suitable for outdoor mass‐production in different regions characterized by different climate conditions.  相似文献   
9.
Diel changes in photosynthetic oxygen evolution and several photochemical parameters measured by chlorophyll fluorescence quenching and induction were measured in outdoor dense cultures of the alga Monodus subterraneus (Eustigmatophyta). Cultures were maintained under two temperature regimes. In one, a rise in temperature was initiated in the morning by the increase in solar radiation up to the optimal temperature of 28 °C; in the other, a heating device was used to increase the rate of warming up in early morning. Although the two cultures were maintained at the same temperature and light intensity for most of the day, cultures exposed for only a short time to suboptimal morning temperature showed a larger decrease in almost all the photosynthetic parameters. By comparing the diel changes in maximal photochemistry efficiency of photosystem II, the electron transport rate and the photochemical and non‐photochemical chlorophyll fluorescence quenching of the cultures, we concluded that even a relatively short exposure to suboptimal morning temperatures induced photoinhibitory damage. The higher photochemical activity of the heated culture was also reflected in a significant increase in productivity, which was 60% higher in the morning heated cultures than in the non‐heated cultures.  相似文献   
10.
Heat production (HP) of male and female mouse deer during eating, standing and sitting was determined using the open circuit respiration chamber (RC). The time taken for similar activities was also determined in an outdoor enclosure (OD). The animals were fed kangkong (Ipomoea aquatica), sweet potato (Ipomoea batatas) and rabbit pellet ad libitum. Male mouse deer consumed more dry matter (DM), organic matter (OM) and gross energy (GE) than female. The time for each activity of male and female mouse deer kept in RC and OD was similar. The average time spent in RC and OD for both male and female, respectively, for sitting (956 and 896 min/day) was significantly (P<0.01) longer than standing (463 and 520 min/day) and eating (21 and 24 min/day). Heat production for male and female mouse deer, respectively, during eating was the highest (0.44 and 0.43 kJ/kg W0.75/min) followed by standing (0.37 and 0.33 kJ/kgW0.75/min) and sitting (0.26 and 0.26 kJ/kg W0.75/min). The difference in HP per min during standing between male and female was significant (P<0.05). The HP for 08.00–14.00 h and 14.00–20.00 h periods were higher than 20.00–02.00 h and 02.00–08.00 h periods. The overall HP for males during 08.00–14.00 h and 14.00–20.00 h periods were significantly (P<0.05) higher (114.8 and 119.2 kJ/kg W0.75) than female (107.5 and 110.4 kJ/kg W0.75), respectively.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号