首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   155篇
  免费   10篇
  国内免费   3篇
  2024年   1篇
  2023年   3篇
  2022年   3篇
  2021年   7篇
  2020年   4篇
  2019年   6篇
  2018年   3篇
  2017年   5篇
  2016年   4篇
  2015年   2篇
  2014年   4篇
  2013年   9篇
  2012年   4篇
  2011年   8篇
  2010年   3篇
  2009年   9篇
  2008年   8篇
  2007年   13篇
  2006年   4篇
  2005年   5篇
  2004年   11篇
  2003年   3篇
  2002年   8篇
  2001年   10篇
  2000年   3篇
  1999年   1篇
  1998年   3篇
  1997年   1篇
  1996年   5篇
  1995年   1篇
  1994年   1篇
  1993年   1篇
  1992年   2篇
  1991年   3篇
  1990年   2篇
  1989年   2篇
  1988年   2篇
  1987年   1篇
  1986年   1篇
  1984年   1篇
  1982年   1篇
排序方式: 共有168条查询结果,搜索用时 78 毫秒
1.
作为入侵物种,北美水貂(Neovison vison)在欧洲引起了一系列生态问题,侵占了欧亚水獭(Lutra lutra)的生态空间,其入侵性对当地生物多样性和生态系统构成了严重威胁。水貂引入我国东北地区已有70多年的历史,然而国内对其野外种群却鲜有研究。掌握水貂种群的入侵范围、入侵影响因素以及与本地具有相似生态位的欧亚水獭之间的竞争关系,对水貂的入侵管理和东北地区的生物多样性保护具有重要意义。本研究利用实地调查和文献资料获取的分布信息,通过集合模型识别水貂和水獭的潜在分布区,评估水貂对水獭在地理空间上的入侵风险,并通过主成分分析(principal component analysis,PCA)评估其生态位重叠和影响因素。结果表明:(1)我国东北地区水貂的潜在分布区面积为61,944.57 km2,水獭的潜在分布区面积为83,590.94 km2,两者重叠区域面积为50,544.21 km2,占水獭潜在分布区面积的60.47%;(2)从各省分布情况来看,黑龙江省水獭受水貂入侵的风险最高,潜在分布区重叠的比例达到78.9...  相似文献   
2.
Global climate change has already caused bottom temperatures of coastal marine ecosystems to increase worldwide. These ecosystems face many pressures, of which fishing is one of the most important. While consequences of global warming on commercial species are studied extensively, the importance of the increase in bottom temperature and of variation in fishing effort is more rarely considered together in these exploited ecosystems. Using a 17 year time series from an international bottom trawl survey, we investigated covariations of an entire demersal ecosystem (101 taxa) with the environment in the Celtic Sea. Our results showed that over the past two decades, biotic communities in the Celtic Sea were likely controlled more by environmental variables than fisheries, probably due to its long history of exploitation. At the scale of the entire zone, relations between taxa and the environment remained stable over the years, but at a local scale, in the center of the Celtic Sea, dynamics were probably driven by interannual variation in temperature. Fishing was an important factor structuring species assemblages at the beginning of the time series (2000) but decreased in importance after 2009. This was most likely caused by a change in spatial distribution of fishing effort, following a change in targeted taxa from nephrops to deeper water anglerfish that did not covary with fishing effort. Increasing bottom temperatures could induce additional changes in the coming years, notably in the cold‐water commercial species cod, hake, nephrops, and American plaice. We showed that analyzing covariation is an effective way to screen a large number of taxa and highlight those that may be most susceptible to future simultaneous increases in temperature and changes in exploitation pattern by fisheries. This information can be particularly relevant for ecosystem assessments.  相似文献   
3.
Demersal fish resources in the East China and Yellow Seas were reviewed. A current and historical survey of the fishery was made. The distribution and migration of demersal fish were characterized, and an assessment of fishery resources was provided. The standardization of fishing efforts and resources management were also examined.  相似文献   
4.
5.
6.
Semi-aquatic mammals are dependent upon streams and riparian areas, which are a product of the landscapes they drain. Both local stream morphology and surrounding land use are likely to have important influences on current occupancy of semi-aquatic mammals and potentially affect future geographic distributions. We identified aspects of the riparian system and stream structure at multiple scales that relate to the presence of river otter (Lontra canadensis) and mink (Neovison vison) to better understand how changing landscapes affect occupancy dynamics of these semi-aquatic mammals and to facilitate future monitoring and management. We estimated multi-season occupancy using 103 sites sampled over 6 seasonal sampling periods in southern Illinois, USA (44,526 km2) during 2012–2014. We hypothesized river otter and mink occupancy were related to multiple aspects of landscape and local habitat attributes including land cover, water availability, human disturbance, and stream characteristics. Occupancy of river otter was predicted by large stream size, less developed area near the stream site, and proximity to areas with reintroduced or remnant populations of river otter. Mink were more likely to occupy sites with small streams and decreased water availability near the site. However, top models for both species had low weights and high uncertainty for multiple variables. Habitat-based models may not be the best predictors of occupancy for these carnivores because they are more likely to respond to prey diversity or availability, but landscape changes that decrease natural water availability and increase human disturbance to the stream at the local scale are likely to negatively affect river otter. © 2019 The Authors. The Journal of Wildlife Management published by Wiley Periodicals, Inc. on behalf of The Wildlife Society.  相似文献   
7.
Southern Sea Otter as a Sentinel of Marine Ecosystem Health   总被引:1,自引:0,他引:1  
The southern sea otter (Enhydra lutris nereis) is listed as threatened under the Endangered Species Act (ESA) and is a keystone species, strongly influencing the abundance and diversity of the other species within its kelp forest ecosystem. This is accomplished primarily by preying upon urchins that eat the kelp stipe and holdfast, which can reduce a kelp forest to an urchin barren. Sea otters are very susceptible to marine pollutants such as petroleum, which may be directly toxic and/or alter their furs insulating properties. Sea otters are an excellent sentinel species. They eat approximately 25% of their body weight per day in shellfish and other invertebrates, and can concentrate and integrate chemical contaminants. In addition, they appear to be susceptible to a number of diseases and parasites that may have anthropogenic origins, and shellfish may serve as an intermediary for some of these infections. Many of the shellfish the otters eat are also harvested for human food. In their role as sentinels, sea otter health has implications for human health, economic sustainability of shellfisheries, as well as overall marine ecosystem health. The recent southern sea otter decline has been viewed with some alarm by conservationists and, indeed, recovery seems a long way off. High mortality rather than depressed recruitment appears to underlie the decline. A good deal of debate has centered on the role of infectious diseases and parasites, exposure to contaminants, nutrition and prey availability, net and pot fishery interactions, and other sources of mortality. Current research is being done related to major classes of mortality, various types of pollutants and some specific organisms causing southern sea otter mortality, and their implications for marine ecosystem health and sustainability.  相似文献   
8.
Abstract: We describe a method to convert continuously collected time-depth data from archival time-depth recorders (TDRs) into activity budgets for a benthic-foraging marine mammal. We used data from 14 TDRs to estimate activity-specific time budgets in sea otters (Enhydra lutris) residing near Cross Sound, southeast Alaska, USA. From the TDRs we constructed a continuous record of behavior for each individual over 39-46 days during summer of 1999. Behaviors were classified as foraging (diving to the bottom), other diving (traveling, grooming, interacting), and nondiving (assumed resting). The overall average activity budget (proportion of 24-hr/d) was 0.37 foraging (8.9 hr/d), 0.11 in other diving (2.6 hr/d), and 0.52 nondiving time (12.5 hr/d). We detected significant differences in activity budgets among individuals and between groups within our sample. Historically, the sea otter population in our study area had been expanding and sequentially reoccupying vacant habitat since their reintroduction to the area in the 1960s, and our study animals resided in 2 adjacent yet distinct locations. Males (n = 5) and individuals residing in recently occupied habitat (n = 4) spent 0.28-0.30 of their time foraging (6.7-7.2 hr/d), 0.17-0.18 of their time in other diving behaviors (4.1-4.3 hr/d), and 0.53-0.54 of their time resting (12.7-13.0 hr/d). In contrast, females (n = 9) and individuals residing in longer occupied habitat (n = 10) spent 0.40 of their time foraging (9.6 hr/d), 0.08-0.09 of their time in other diving behaviors (1.9-2.2 hr/d), and 0.51-0.52 of their time resting (12.2-12.5 hr/d). Consistent with these differences, sea otters residing in more recently occupied habitat captured more and larger clams (Saxidomus spp., Protothaca spp., Macoma spp., Mya spp., Clinocardium spp.) and other prey, and intertidal clams were more abundant and larger in this area. We found that TDRs provided data useful for measuring activity time budgets and behavior patterns in a diving mammal over long and continuous time periods. Fortuitous contrasts in time budgets between areas where our study animals resided suggest that activity time budgets estimated from TDRs may be a sensitive indicator of population status, particularly in relation to prey availability.  相似文献   
9.
The effects of bottom trawling on benthic invertebrates include reductions of biomass, diversity and body size. These changes may negatively affect prey availability for demersal fishes, potentially leading to reduced food intake, body condition and yield of fishes in chronically trawled areas. Here, the effect of trawling on the prey availability and diet of two commercially important flatfish species, plaice (Pleuronectes platessa) and dab (Limanda limanda), was investigated over a trawling intensity gradient in the Irish Sea. Previous work in this area has shown that trawling negatively affects the condition of plaice but not of dab. This study showed that reductions in local prey availability did not result in reduced feeding of fish. As trawling frequency increased, both fish and prey biomass declined, such that the ratio of fish to prey remained unchanged. Consequently, even at frequently trawled sites with low prey biomass, both plaice and dab maintained constant levels of stomach fullness and gut energy contents. However, dietary shifts in plaice towards energy-poor prey items were evident when prey species were analysed individually. This, together with a potential decrease in foraging efficiency due to low prey densities, was seen as the most plausible cause for the reduced body condition observed. Understanding the relationship between trawling, benthic impacts, fish foraging and resultant body condition is an important step in designing successful mitigation measures for future management strategies in bottom trawl fisheries.  相似文献   
10.
Selectivity experiments were carried out during trawling targeting deep-water shrimps Aristaeomorpha foliacea (Risso, 1827) and Aristeus antennatus (Risso, 1816) (Crustacea, Decapoda, Aristeidae) in the North-Western Ionian Sea (Eastern-Central Mediterranean). Different criteria were employed to analyse maturity; however, the proportion at 50% of retained, mated and mature specimens was always used to indicate the size, expressed as Carapace Length (CL, mm), at first capture (CLc), mating (CLsp) and at first maturity (CLm), respectively. In order to estimate the size at 50% maturity (CLm) for females of both species, three criteria were adopted. In particular, CLm was computed for the mature females not considering the presence of spermatophores, for the mature females with spermatophores and for the mature females intersected by the decreasing proportion with size of females without spermatophores. Three diamond stretched mesh codends of 40, 50 and 60 mm were tested using a cover of 20 mm. The 40-mm stretched mesh size (European Union legal size in the Mediterranean) was not selective for the sampled population of each species. The size at first capture (CLc), calculated in both species for the two sexes combined, increased significantly with mesh size. Even for the mesh size of 60 mm, the size at first capture was still smaller than the sizes at 50% maturity, whatever the criterion adopted. Since the differences between the size at first maturity and the sizes at first capture are greater in A. foliacea than A. antennatus, the former species appears in this respect to be more vulnerable to trawling than the latter.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号