首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   18篇
  免费   2篇
  国内免费   1篇
  2015年   2篇
  2013年   2篇
  2010年   1篇
  2009年   1篇
  2008年   1篇
  2004年   1篇
  2003年   2篇
  2002年   1篇
  1995年   1篇
  1994年   1篇
  1993年   1篇
  1991年   1篇
  1989年   2篇
  1982年   2篇
  1979年   1篇
  1974年   1篇
排序方式: 共有21条查询结果,搜索用时 15 毫秒
1.
Coralline red algae from the New Zealand region were investigated in a study focused on documenting regional diversity. We present a multi‐gene analysis using sequence data obtained for four genes (nSSU, psaA, psbA, rbcL) from 68 samples. The study revealed cryptic diversity at both genus and species levels, confirming and providing further evidence of problems with current taxonomic concepts in the Corallinophycidae. In addition, a new genus Corallinapetra novaezelandiae gen. et sp. nov. is erected for material from northern New Zealand. Corallinapetra is excluded from all currently recognized families and orders within the Corallinophycidae and thus represents a previously unrecognized lineage within this subclass. We discuss rank in the Corallinophycidae and propose the order Hapalidiales.  相似文献   
2.
A new unicellular red alga, Corynoplastis japonica gen. et sp. nov., is described from Tobishima, Japan. Cells are spherical, 18–33 µm in diameter, pale purple to brownish red and surrounded by a mucilaginous sheath. A single chloroplast with many lobes extends from the cell periphery to the cell center. A peripheral thylakoid is present. A pyrenoid occurs at each innermost chloroplast lobe end and one or two thylakoids are present in the pyrenoid matrix. The nucleus is eccentric to peripheral and Golgi bodies are scattered throughout the cell and associated with endoplasmic reticulum. Cells have a slow random gliding motility. The low molecular weight carbohydrate mannitol is present in the cells. Molecular phylogenetic analysis indicates that this alga is closely related to members of the genus Rhodella. A new order, Dixoniellales, is established for Dixoniella, Neorhodella and Glaucosphaera based on molecular and ultrastructural evidence (Golgi bodies associated only with the nucleus). The redefined order Rhodellales in which Rhodella and Corynoplastis are placed is characterized ultrastructurally by Golgi bodies scattered throughout the cytoplasm and associated with endoplasmic reticulum.  相似文献   
3.
The mode of division of vegetative cells, formation of spermatangial parent cells, initiation of the carpogonial branch apparatus, and formation of tetrasporangial initials are homologous developmental processes that are documented for the first time in the type species of the economically important family Gracilariaceae, Gracilaria verrucosa (Hudson) Papenfuss from the British Isles. G. verrucosa is characterized by a supporting cell of intercalary origin that bears a 2-celled carpogonial branch flanked by two sterile branches, direct fusion of cells of sterile branches onto the carpogonium, formation of an extensive carpogonial fusion cell through the incorporation of additional gametophytic cells prior to gonimoblast initiation, gonimoblast initials produced from fusion cell lobes, schizogenous development of the cytocarp cavity, inner gonimoblast cells producing tubular nutritive cells that fuse with cells of the pericarp or floor of the cystocarp, absence of cytologically modified tissue in the floor of the cystocarp, and carposporangial initials produced in clusters or irregular chains. Spermatangial parent cells are generated in flaments from intercalary cortical cells that line an intercellular space forming a ‘pit’ or ‘conceptacle’. Tetrasporangial initials are transformed from terminal cells derived through division of an outer cortical cell. Tetrasporangia are cruciately divided. The Gracilariaceae is removed from Gigartinales and transferred to the new order Gracilariales. Their closest living relatives appear to be agarophytes belonging to the Gelidiales and Ahnfeltiales.  相似文献   
4.
Five strains (JA325, JA389, JA473, JA563 and JA582) of Gram stain-negative, vibrioid to spiral shaped, phototrophic purple bacteria were isolated from solar salterns of India. All strains contained bacteriochlorophyll-a and carotenoids of the spirilloxanthin series as photosynthetic pigments. C18:1ω7c, C18:1ω7c 11-methyl and C16:0 were the major fatty acids of all strains. Diphosphatidylglycerol (DPG), phosphatidylglycerol (PG), ornithine lipid (OL), an unidentified phospholipid (PL), and an unidentified aminolipid (AL) were the major polar lipids of all the strains. According to 16S rRNA gene sequences, all strains clustered phylogenetically with the only species of the genus Rhodothalassium (99.8–99.3% sequence similarity) but only strains JA325 and JA563 were distinctly related (60 + 1.5% DNA–DNA hybridization [DDH]) to the type strain Rhodothalassium salexigens DSM 2132T. However, the genotypic data of strains JA325 and JA563 was not supported because of a large number of phenotypic differences compared to the type strain, therefore, it is proposed that all five newly isolated strains were R. salexigens-like strains. In addition, phylogenetically, the Rhodothalassium clade represented a distinct lineage and formed a deep branch with less than 90% 16S rRNA gene sequence similarity to other orders of the Alphaproteobacteria, and characteristic phenotypic properties also distinguished these bacteria from other purple non-sulfur bacteria. Therefore, the novel family Rhodothalassiaceae fam. nov. and the novel order Rhodothalassiales ord. nov. are proposed for the distinct phyletic line represented by the genus Rhodothalassium.  相似文献   
5.
The Stylonematales is the sole order of the Stylonematophyceae. The order consists of a mixture of filamentous or unicellular taxa that are small, grow on various surfaces, and are described from many floras, indicating that they may be cosmopolitan. Such ubiquity has been proposed to be due to properties of microorganisms, such as large population sizes, rather than human‐derived phenomena. While their small nature makes most records fortuitous, we targeted these red algae to get a better understanding of their global distribution, genetic variation, and phylogeographic relationships. Our results indicated that the genera are mostly well supported, except for the position of Stylonema cornu‐cervi with Goniotrichopsis reniformis, while intergeneric relationships are mostly unsupported. The most commonly isolated species was Stylonema alsidii. Within this species, several well‐supported clades were present. The phylogeographic relationships in S. alsidii showed no obvious biogeographic pattern, with supported clades containing samples from disparate locations, and multiple samples from the same area not grouping together. Some clades showed little genetic variation and wide distributions, possibly indicating human‐derived dispersal. Other clades, also with wide distribution, showed more genetic structure and could be candidates for groups formed by natural long‐distance dispersal. While all issues on ubiquity cannot be answered with this data set, it would appear that at least S. alsidii is a true ubiquitous taxon. The sister relationship of Rufusia pilicola to the remaining Stylonematophyceae, the presence of the carbohydrate floridoside, and this species’ unusual habitat indicate that it belongs to a new order, Rufusiales.  相似文献   
6.
We provide molecular phylogenetic evidence that the obscure genera Palmophyllum Kütz. and Verdigellas D. L. Ballant. et J. N. Norris form a distinct and early diverging lineage of green algae. These palmelloid seaweeds generally persist in deep waters, where grazing pressure and competition for space are reduced. Their distinctness warrants recognition as a new order, the Palmophyllales. Although phylogenetic analyses of both the 18S rRNA gene and two chloroplast genes (atpB and rbcL) are in agreement with a deep‐branching Palmophyllales, the genes are in conflict about its exact phylogenetic placement. Analysis of the nuclear ribosomal DNA allies the Palmophyllales with the prasinophyte genera Prasinococcus and Prasinoderma (Prasinococcales), while the plastid gene phylogeny placed Palmophyllum and Verdigellas as sister clade to all other Chlorophyta.  相似文献   
7.
Yves Lemoigne 《Geobios》1982,15(1):33-41
The study of numerous prints referred to the devonian genus Leptophloeum, more particularly from Kazakhstan and South Africa, has permitted to specify the morphology of the leaves and to explain the prints of the leaf cushions. The different species are revised. A comparison of the devonian genus Leptophloeum with the permian genus Lycopodiopsis leads us to consider the distinction of a new order: the Leptophloeodendrales regrouping these two genus.  相似文献   
8.
With the realization that new data (especially ultrastructural) and new ideas are making necessary a major revision of the scheme of classification of the Ciliophora, several groups of ciliatologists are preparing treatises on the subject. The present paper is concerned with the composition of the large new class of ciliates, Kinetofragmophora de Puytorac et al., 1974, established very recently by the French group. Several new taxa, at ordinal and subordinal levels, are proposed for inclusion in that class, with special emphasis on the new order to contain the most primitive of extant species. Actions taken here are incorporated in a major review and revisory work of the author which is being published elsewhere. The class Kinetofragmophora, by far the largest of the 3 classes now recognized as comprising the whole phylum Ciliophora, is itself considered to contain 4 sizeable subclasses and to embrace a total of 13 orders and 14 suborders. Two orders and 6 suborders are named and described here as new, enumerated and briefly identified as follows: Order Primociliatida n. ord., for the most “primitive” of gymnostomes, with three new suborders— Homokaryotina n. subord., for the homokaryotic genus Stephanopogon; Karyorelictina n. subord., for a number of mostly interstitial ciliates which, though heterokaryotic, possess nondividing, diploid macronuclei (e.g. Trachelocerca, Trachelonema, and Tracheloraphis); and Prorodontina n. subord., for a group of relatively specialized formerly “rhabdophorine” gymnostomes such as Coleps, Placus, and Prorodon and order Haptorida n. ord., for rapacious carnivorous forms, formerly lumped with the preceding groups as “rhabdophorines,” many with oral toxicysts and well developed thigmotactic ciliature (e.g. Actinobolina, Didinium, Dileptus, Enchelys, Spathidium, and Trachelius). All foregoing taxa are members of the 1st kinetofragmophoran subclass, the Gymnostomata. In the taxonomic conclusions drawn, new significance is placed on ultrastructural data, on macronuclear differences of evolutionary importance, and on habitat and behavior. A brief review of the literature on psammophilous ciliates is presented. In the subclass Vestibulifera is now located the order Entodiniomorphida Reichenow, a group formerly considered to be a spirotrich taxon. A suborder, Blepharocorythina n. subord., is proposed to contain the old “trichostome” family Blepharocorythidae, species commensalistic in horses and ruminants and now—with their syncilia, etc.—considered ancestral to the ophryoscolecids and relatives. In the subclass Hypostomata, order Nassulida, the suborder Paranassulina n. subord. is established to contain nassulids which appear more highly evolved than Nassula itself (e.g. Paranassula and Enneameron) in perioral ciliature, mode of stomatogenesis, etc. In the enigmatic and still vexatious order Rhynchodida, the suborder Aneistrocomina n. subord. is erected to embrace rhynchodid genera with an anteriorly located sucking tentacle (and other unique characteristics)—for example, Ancistrocoma, Crebricoma, Holocoma, and Sphenophrya. With the banishment of the bulk of the old “thigmotrichs” to the oligohymenophoran order Scuticociliatida, the ancistrocomines are left with the family Hypocomidae (and relatives) in the order Rhynchodida. It is not yet clear, however, how closely related the 2 suborders of rhynchodids should be considered. Special nomenclatural problems are also involved.  相似文献   
9.
Agamococcidiorida ord. n. and Rhytidocystidae fam. n. are established in the apicomplexan subclass Coccidiasina for the genus Rhytidocystis Henneguy, 1907. Dehornia Porchet-Henneré, 1972 is synonymized with Rhytidocystis.  相似文献   
10.
Vegetative cells and zoospores of Hormotilopsis gelatinosa Trainor & Bold, H. tetravacuolaris Arce & Bold, Planophila terrestris Groover & Hofstetter, and Phyllogloea fimbriata (Korchikov) Silva were examined by transmission electron microscopy. All cells had pyrenoids traversed by cytoplasmic channels. Zoospores were quadriflagellate and had essentially cruciate flagellar apparatuses. Scales were present on free-swimming zoospores. These features are essentially identical to those of Chaetopeltis sp. and are dissimilar to those of other described green algae. The new order Chaetopeltidales is created to accommodate the genera Chaetopeltis, Hormotilopsis, Planophila sensu Groover & Hofstetter, Phyllogloea, Dicranochaete, and Schizochlamys, organisms previously scattered among the orders Tetrasporales, Chloro-coccales, Chlorosarcinales, and Chaetophorales. Members of the order are closely related to the ancestral chlorophycean flagellate genus Hafniomonas, may be ancestral with respect to other Chlorophyceae, and may also be closely related to the ulvophycean order Ulotrichales.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号