首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   315篇
  免费   20篇
  国内免费   5篇
  2023年   5篇
  2022年   8篇
  2021年   6篇
  2020年   10篇
  2019年   7篇
  2018年   8篇
  2017年   5篇
  2016年   8篇
  2015年   10篇
  2014年   22篇
  2013年   19篇
  2012年   26篇
  2011年   19篇
  2010年   18篇
  2009年   13篇
  2008年   25篇
  2007年   24篇
  2006年   24篇
  2005年   14篇
  2004年   21篇
  2003年   6篇
  2002年   9篇
  2001年   1篇
  2000年   4篇
  1999年   1篇
  1998年   7篇
  1997年   3篇
  1996年   5篇
  1994年   2篇
  1993年   4篇
  1991年   3篇
  1986年   1篇
  1983年   1篇
  1982年   1篇
排序方式: 共有340条查询结果,搜索用时 15 毫秒
1.
SPA::EcoRI fusion protein was produced by Escherichia coli JM103 carrying the multicopy expression plasmid pMTC48, the multicopy repressor plasmid pRK248, and the multicopy protection plasmid pEcoR4 in a 60-L working volume airlift tower loop reactor on M9 minimal medium with glucose. Cell mass concentration, total cell count, number of colony-forming units, specific growth rate, yield coefficient, and metabolite (acetate, pyruvate, succinate, lactate, ethanol) concentrations were monitored during the growth phase and gene expression. Gene expression was induced by temperature shift or chemically by isopropyl-thiogalactosidase in the airlift tower loop reactor (ALTR) at constant cultivation time and in a small stirred tank reactor at different cultivation times. During induction, the cultivation medium was supplemented with concentrated Luria-Bertani (LB) medium. The intracellular enzyme activity was evaluated as a function of the time after the start of the induction. It was found that the reduction of the glucose concentration and increase of the dissolved oxygen concentration reduced the acetate produced and increased the intracellular enzyme activity. (c) 1993 John Wiley & Sons, Inc.  相似文献   
2.
Saccharomyces cerevisiae was cultivated in a 4-m(3) pilot plant airlift tower loop reactor with a draft tube in batch and continuous operations and for comparison in a laboratory airlift tower loop reactor of 0.08 m(3) volume. The reactors were characterized during and after the cultivation by measuring the distributions of the residence times of the gas phase with pseudostochastic tracer signals and mass spectrometer and by evaluating the mixing in the liquid phase with a pulse-shaped volatile tracer signal and mass spectrometer as a detector. The mean residence times and the intensities of the axial mixing in the riser and downcomer, the circulation times of the gas phase, and the fraction of the recirculated gas phase were evaluated and compared.  相似文献   
3.
4.
One of the core symptoms of autism spectrum disorder (ASD) is impaired social interaction. Currently, no pharmacotherapies exist for this symptom due to complex biological underpinnings and distinct genetic models which fail to represent the broad disease spectrum. One convincing hypothesis explaining social deficits in human ASD patients is amotivation, however it is unknown whether mouse models of ASD represent this condition. Here we used two highly trusted ASD mouse models (male Shank3‐deficient [Shank3+/ΔC] mice modeling the monogenic etiology of ASD, and inbred BTBR mice [both male and female] modeling the idiopathic and highly polygenic pathology for ASD) to evaluate the level of motivation to engage in a social interaction. In the behavioral paradigms utilized, a social stimulus was placed in the open arm of the elevated plus maze (EPM), or the light compartment of the light‐dark box (LDB). To engage in a social interaction, mice were thus required to endure innately aversive conditions (open areas, height, and/or light). In the modified EPM paradigm, both Shank3+/ΔC and BTBR mice demonstrated decreased open‐arm engagement with a social stimulus but not a novel object, suggesting reduced incentive to engage in a social interaction in these models. However, these deficits were not expressed under the less severe aversive pressures of the LDB. Collectively, we show that ASD mouse models exhibit diminished social interaction incentive, and provide a new investigation strategy facilitating the study of the neurobiological mechanisms underlying social reward and motivation deficits in neuropsychiatric disorders.  相似文献   
5.
The relative lack of sensitive and clinically valid tests of rodent behavior might be one of the reasons for the limited success of the clinical translation of preclinical Alzheimer's disease (AD) research findings. There is a general interest in innovative behavioral methodology, and protocols have been proposed for touchscreen operant chambers that might be superior to existing cognitive assessment methods. We assessed and analyzed touchscreen performance in several novel ways to examine the possible occurrence of early signs of prefrontal (PFC) functional decline in the APP/PS1 mouse model of AD. Touchscreen learning performance was compared between APP/PS1-21 mice and wildtype littermates on a C57BL/6J background at 3, 6 and 12 months of age in parallel to the assessment of spatial learning, memory and cognitive flexibility in the Morris water maze (MWM). We found that older mice generally needed more training sessions to complete the touchscreen protocol than younger ones. Older mice also displayed defects in MWM working memory performance, but touchscreen protocols detected functional changes beginning at 3 months of age. Histological changes in PFC of APP/PS1 mice indeed occurred as early as 3 months. Our results suggest that touchscreen operant protocols are more sensitive to PFC dysfunction, which is of relevance to the use of these tasks and devices in preclinical AD research and experimental pharmacology.  相似文献   
6.
Oxidative stress (OS) and reactive oxygen species (ROS) play a modulatory role in synaptic plasticity and signaling pathways. Mitochondria (MT), a major source of ROS because of their involvement in energy metabolism, are important for brain function. MT‐generated ROS are proposed to be responsible for a significant proportion of OS and are associated with developmental abnormalities and aspects of cellular aging. The role of ROS and MT function in cognition of healthy individuals is relatively understudied. In this study, we characterized behavioral and cognitive performance of 5‐ to 6‐month‐old mice over‐expressing mitochondrial catalase (MCAT). MCAT mice showed enhancements in hippocampus‐dependent spatial learning and memory in the water maze and contextual fear conditioning, and reduced measures of anxiety in the elevated zero maze. Catalase activity was elevated in MCAT mice in all brain regions examined. Measures of oxidative stress (glutathione, protein carbonyl content, lipid peroxidation, and 8‐hydroxyguanine) did not significantly differ between the groups. The lack of differences in these markers of oxidative stress suggests that the differences observed in this study may be due to altered redox signaling. Catalase over‐expression might be sufficient to enhance cognition and reduce measures of anxiety even in the absence of alteration in levels of OS.  相似文献   
7.
Melanin-concentrating hormone (MCH) is a hypothalamic peptide that plays a critical role in the regulation of food intake and energy metabolism. In this study, we investigated the potential role of dense hippocampal MCH innervation in the spatially oriented food-seeking component of feeding behavior. Rats were trained for eight sessions to seek food buried in an arena using the working memory version of the food-seeking behavior (FSB) task. The testing day involved a bilateral anti-MCH injection into the hippocampal formation followed by two trials. The anti-MCH injection did not interfere with the performance during the first trial on the testing day, which was similar to the training trials. However, during the second testing trial, when no food was presented in the arena, the control subjects exhibited a dramatic increase in the latency to initiate digging. Treatment with an anti-MCH antibody did not interfere with either the food-seeking behavior or the spatial orientation of the subjects, but the increase in the latency to start digging observed in the control subjects was prevented. These results are discussed in terms of a potential MCH-mediated hippocampal role in the integration of the sensory information necessary for decision-making in the pre-ingestive component of feeding behavior.  相似文献   
8.
Prenatal exposure to alcohol causes a wide range of deficits known as fetal alcohol spectrum disorders (FASDs). Many factors determine vulnerability to developmental alcohol exposure including timing and pattern of exposure, nutrition and genetics. Here, we characterized how a prevalent single nucleotide polymorphism in the human brain‐derived neurotrophic factor (BDNF) gene (val66met) modulates FASDs severity. This polymorphism disrupts BDNF's intracellular trafficking and activity‐dependent secretion, and has been linked to increased incidence of neuropsychiatric disorders such as depression and anxiety. We hypothesized that developmental ethanol (EtOH) exposure more severely affects mice carrying this polymorphism. We used transgenic mice homozygous for either valine (BDNFval/val) or methionine (BDNFmet/met) in residue 68, equivalent to residue 66 in humans. To model EtOH exposure during the second and third trimesters of human pregnancy, we exposed mice to EtOH in vapor chambers during gestational days 12 to 19 and postnatal days 2 to 9. We found that EtOH exposure reduces cell layer volume in the dentate gyrus and the CA1 hippocampal regions of BDNFmet/met but not BDNFval/val mice during the juvenile period (postnatal day 15). During adulthood, EtOH exposure reduced anxiety‐like behavior and disrupted trace fear conditioning in BDNFmet/met mice, with most effects observed in males. EtOH exposure reduced adult neurogenesis only in the ventral hippocampus of BDNFval/val male mice. These studies show that the BDNF val66met polymorphism modulates, in a complex manner, the effects of developmental EtOH exposure, and identify a novel genetic risk factor that may regulate FASDs severity in humans.  相似文献   
9.
环境噪声被认为是影响健康的重要因素之一,但有关胎儿期环境噪声对成年后听觉行为的影响缺少系统的研究。本研究对胎儿噪声暴露组、成年噪声暴露组和正常对照组大鼠在出生后第11周开始进行为期17d的听觉目标探索训练,观察其在水迷宫中寻找听觉目标的行为差异。以大鼠寻找平台的时间、成功率、运动轨迹为指标对其听觉目标探索行为进行比较。结果发现,噪声暴露可导致大鼠在水迷宫中的听觉目标探索行为的缺陷,在胎儿期噪声暴露比成年期噪声暴露对动物探索听觉目标的行为影响更大。该结果提示,孕期进行适当的噪声防护以保证优生优育是非常必要的。  相似文献   
10.
A series of four experiments was performed to determine whether acute exposure to a range of 50 Hz magnetic fields had any effect on a learning task in adult male CD1 mice. A radial-arm maze placed within the bore of an electromagnet was used to assess spatial discrimination learning for food reward. Subjects were reduced to 85% of their free-feeding weight and were placed in the maze for up to 15 minutes each day for 10 days. Performance of the task was measured by using maximum likelihood techniques to calculate the probability that an animal would not reenter any given arm of the maze. Experimental subjects were exposed to a vertical, 50 Hz sinusoidal magnetic field at 5 μT, 50 μT, 0.5 mT, or 5.0 mT (rms). Control subjects were exposed only to a background time-varying field of less than 50 nT and the ambient static field of about 40 μT. The variation in the applied magnetic field was less than 5% except at the ends of the arms, where it approached 10%. It was found that all eight groups of subjects (n = 10 in all cases) showed similar increases in performance with testing, and the acquisition curve for each group of experimental subjects was not significantly different from that of their control group (P > 0.05 in all cases). It was concluded that exposure had no effect on learning at any flux density. This result is contrary to the findings of a number of preliminary studies, although other studies have reported that magnetic fields do not affect spatial learning in adult male rodents. It is possible that differences between experimental conditions might explain some of this apparent discrepancy. © 1996 Wiley-Liss, Inc.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号