首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   23篇
  免费   1篇
  国内免费   1篇
  2023年   2篇
  2019年   1篇
  2016年   2篇
  2014年   2篇
  2012年   2篇
  2009年   1篇
  2005年   1篇
  2004年   1篇
  2002年   1篇
  2001年   1篇
  1995年   1篇
  1993年   1篇
  1992年   1篇
  1990年   4篇
  1986年   2篇
  1982年   1篇
  1979年   1篇
排序方式: 共有25条查询结果,搜索用时 15 毫秒
1.
Morphology,physics, chemistry and biology of Lake Rara in West Nepal   总被引:1,自引:1,他引:0  
A survey of oligotrophic Lake Rara, the biggest lake in Nepal, was carried out from 1982 till 1984. Mean depth is 100 m, and maximum depth is 167 m. The surface area covers 9.8 km2, and the lake contains 0.98 km3 volume of water. Transparency was about 16 m, photoquantum yield decreased exponentially with depth below 5 m, and the extinction coefficient was 8.3 × 10−2. The concentration of Chl.-a was in the range of 0.06–0.46 mg m−3, and total nitrogen was 18–30 μg 1−1. The whole water column was well oxygenated. Primary productivity was extremely low. It has more than 30 inflowing brooks and one outlet. The water quality of the brooks changes drastically with their location. The pH, electrical conductivity, and EDTA hardness in the waters from a landslide area were high. In the waters from a rich pine forest they were extremely low. The zooplankton consisted of two species of protozoa, five species of rotifers, two species of Cladocera, and two species of Copepoda. The zooplankton density range was 6200–16200 individuals m−3. The minimum was on November 11th, 1983 and the maximum on August 19th, 1983.  相似文献   
2.
The major source of substrates for microbial activity in the ectorhizosphere and on the rhizoplane are rhizodeposition products. They are composed of exudates, lysates, mucilage, secretions and dead cell material, as well as gases including respiratory CO2. Depending on plant species, age and environmental conditions, these can account for up to 40% (or more) of the dry matter produced by plants. The microbial populations colonizing the endorhizosphere, including mycorrhizae, pathogens and symbiotic N2-fixers have greater access to the total pool of carbon including that recently derived from photosynthesis. Utilization of rhizodeposition products induces at least a transient increase in soil biomass but a sustained increase depends on the state of the native soil biomass, the flow of other metabolites from the soil to the rhizosphere and the water relations of the soil. In addition, the phenomena of oligotrophy, cryptic growth, plasmolysis, dormancy and arrested metabolism can all influence the longevity of rhizosphere organisms. With this background, microbial growth in the rhizosphere will be discussed.  相似文献   
3.
Ollikainen  Minna  Simola  Heikki  Niinioja  Riitta 《Hydrobiologia》1993,269(1):405-413
Sedimentary diatom assemblages in two large oligotrophic clear-water lakes were analysed, to assess their present ecological state and possible eutrophication due to diffuse nutrient loading. The lakes Pyhäjärvi and Puruvesi (Finnish lake district) are proportionally large for their catchment areas which accounts for their long retention times (ca 7 and 11 yr) and oligohumic character. Pyhäjärvi was studied by pairwise comparison of surface sediment diatom assemblages collected in 1985 and 1990 at 12 sites from different parts of the lake. In Puruvesi, the stratigraphy of diatoms was analysed in two short cores from 8 m and 32 m depths.The diatom assemblages of the two lakes are rather similar, and quite distinct from the assemblages of the mesohumic large lakes of the area. Cyclotella kuetzingiana is the most common planktonic dia- tom, but Aulacoseira ambigua abounds in Pyhäjärvi at sites with local sources of eutrophication. A diverse assemblage of benthic forms, especially Fragilaria and Achnanthes spp. characterizes the shallow bottoms in both lakes.There was little change within the short-core diatom profiles of Puruvesi, but the floral composition of the 8-m and 32-m sites differed markedly. The 8-m site, with 60–70% of benthic forms, represents illuminated bottom, on which much of the buried algae have lived in situ, while the deeper site is true profundal, dominated by sedimented planktonic algae.In Pyhäjärvi there was a slight increase in the benthic diatoms from 1985 to 1990, coinciding with increased phosphorus and chlorophyll concentrations as well as Secchi depth lowering. We interprete this observation as a very early step of eutrophication, of which first the sessile algal communities of the illuminated bottom areas have benefited.  相似文献   
4.
【目的】探讨寡营养对人体肠道细菌培养组的条件。【方法】通过稀释富集培养基、固体平板和增菌肉汤培养基成分获得寡营养培养基。对健康人粪便样本分别用原液(0)、5、10、20、30和40倍稀释的富集培养基(添加羊血和瘤胃液的血培养瓶)连续增菌,在不同时间点(第0、3、6、9、15、27、30天)吸取增菌液,用YCFA (yeast casitone fatty acid)固体培养平板分离菌落;用YCFA增菌肉汤增菌后再次挑取单菌落,利用基质辅助激光解吸/电离飞行时间(matrix-assisted laser desorption/ionization time-of-flight mass spectrometry,MALDI-TOF)质谱和16S rRNA基因测序鉴定菌株。通过比较上述6种寡营养条件分离肠道菌群的效果,选取富集培养基原液、稀释10倍和30倍这3 种条件下分离效果较好的富集条件,与同样稀释倍数条件的固体平板和增菌肉汤分别组合成9种培养基条件,进一步优化肠道菌群的培养组条件。【结果】在6种寡营养富集培养基中,未稀释(原液)、10 倍和30倍稀释的富集培养基分离细菌的种类比其他...  相似文献   
5.
The influence of different physiological states on the glucose uptake and mineralization by Cytophaga johnsonae, a freshwater isolate, was examined in batch and chemostat cultures. At different growth rates under glucose limitation in chemostat cultures, different uptake patterns for 14C labeled glucose were observed. In batch culture and at high growth rates the glucose uptake potential showed a higher maximum velocity and a much lower substrate affinity than at lower growth rates. These findings and the results of short-term labeling patterns could be explained by two different glucose uptake mechanisms which enable the strain to grow efficiently both at high and low substrate concentrations. Substrate specificity studies showed that a structural change of the C-2 atom of the glucose molecule was tolerated by both systems. The consequences of these results for the ecophysiological classification of the Cytophaga group and for the operation of continuous cultures are discussed.  相似文献   
6.
The competition for glucose between Escherichia coli ML30, a typical copiotrophic enterobacterium and Chelatobacter heintzii ATCC29600, an environmentally successful strain, was studied in a carbon-limited culture at low dilution rates. First, as a base for modelling, the kinetic parameters μmax and Ks were determined for growth with glucose. For both strains, μmax was determined in batch culture after different precultivation conditions. In the case of C. heintzii, μmax was virtually independent of precultivation conditions. When inoculated into a glucose-excess batch culture medium from a glucose-limited chemostat run at a dilution rate of 0.075 h−1 C. heintzii grew immediately with a μmax of 0.17±0.03 h−1. After five transfers in batch culture, μmax had increased only slightly to 0.18±0.03 h−1. A different pattern was observed in the case of E. coli. Inoculated from a glucose-limited chemostat at D=0.075 h−1 into glucose-excess batch medium E. coli grew only after an acceleration phase of ∼3.5 h with a μmax of 0.52 h−1. After 120 generations and several transfers into fresh medium, μmax had increased to 0.80±0.03 h−1. For long-term adapted chemostat-cultivated cells, a Ks for glucose of 15 μg l−1 for C. heintzii, and of 35 μg l−1 for E. coli, respectively, was determined in 14C-labelled glucose uptake experiments. In competition experiments, the population dynamics of the mixed culture was determined using specific surface antibodies against C. heintzii and a specific 16S rRNA probe for E. coli. C. heintzii outcompeted E. coli in glucose-limited continuous culture at the low dilution rates of 0.05 and 0.075 h−1. Using the determined pure culture parameter values for Ks and μmax, it was only possible to simulate the population dynamics during competition with an extended form of the Monod model, which includes a finite substrate concentration at zero growth rate (smin). The values estimated for smin were dependent on growth rate; at D=0.05 h−1, it was 12.6 and 0 μg l−1 for E. coli and C. heintzii, respectively. To fit the data at D=0.075 h−1, smin for E. coli had to be raised to 34.9 μg l−1 whereas smin for C. heintzii remained zero. The results of the mathematical simulation suggest that it is not so much the higher Ks value, which is responsible for the unsuccessful competition of E. coli at low residual glucose concentration, but rather the existence of a significant smin.  相似文献   
7.
The Florida Everglades is extremely oligotrophic and sensitive to small increases in phosphorus (P) concentrations. P enrichment is one of the dominant anthropogenic impacts on the ecosystem and is therefore a main focus of restoration efforts. In this review, we synthesize research on P biogeochemistry and the impact of P enrichment on ecosystem structure and function in the Florida Everglades. There are clear patterns of increased P concentrations and altered structure and processes along nutrient-enrichment gradients in the water, periphyton, soils, macrophytes, and consumers. Periphyton, an assemblage of algae, bacteria, and associated microfauna, is abundant and has a large influence on phosphorus cycling in the Everglades. The oligotrophic Everglades is P-starved, has lower P concentrations and higher nitrogen–phosphorus (N:P) ratios, and has oxidized to only slightly reduced soil profiles compared to other freshwater wetland ecosystems. Possible general causes and indications of P limitation in the Everglades and other wetlands include geology, hydrology, and dominance of oxidative microbial nutrient cycling. The Everglades may be unique with respect to P biogeochemistry because of the multiple causes of P limitation and the resulting high degree of limitation. Received 23 August 2000; Accepted 23 March 2001.  相似文献   
8.
An extreme oligotroph, Rhodococcus erythropolis N9T-4, showed intracellular accumulation of trehalose and glycogen under oligotrophic conditions. No trehalose accumulation was observed in cells grown on the rich medium. Deletion of the polyphosphate kinase genes enhanced the trehalose accumulation and decreases the intracellular glycogen contents, suggesting an oligotrophic relationship between among the metabolic pathways of trehalose, glycogen, and inorganic polyphosphate biosyntheses.  相似文献   
9.
S. Biswas 《Hydrobiologia》1992,246(2):169-172
Ogelube is a tropical oligotrophic lake having a desmid dominated phytoplankton with maximum density during the warmest season. During the rainy season, the lake cools, phytoplankton declines and dominance shifts to algae other than desmids. The lake cools further as harmattan advances, while phytoplankton reaches its minimum, suggesting water temperature to be more important than other environmental conditions. Decrease in phytoplankton density with falling water temperature was probably due to slower reproduction, rather than to increased death rate.  相似文献   
10.
Plankton communities and hydrochemistry of an oligotrophic lake occupying a glacial valley in Argentinian Patagonia (42 °49S; 71 °43W) were studied. Monthly samples at three stations integrated from 0 to 50 m and stratified samples at the site of maximum depth, were taken during the growing season. Transparency was always controlled by glacial silt, and not by phytoplankton. Lake water belongs to the calcium-bicarbonate type, with low conductivity (24 µS cm–1), and poor buffering capacity. Forty-five phytoplankton taxa were found. Mean phytoplankton density was 49 cells ml–1 and mean biomass 69 µg l–1. N:P relationships, inorganic nitrogen exhaustion in the photic layer, and correlations between nutrients and phytoplankton density suggests nitrogen as the main limiting factor. Fifteen zooplankton species were found. Mean zooplankton density was 12.2 ind. l–1 and mean biomass 22.9 µg l–1. Diatoms and Boeckellidae were the dominant planktonic groups. Morphometry and hydrological factors were responsible for horizontal heterogeneity in phytoplankton and chemical variables.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号