首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7篇
  免费   1篇
  2015年   1篇
  2014年   1篇
  2010年   1篇
  2008年   2篇
  2006年   1篇
  1996年   1篇
  1993年   1篇
排序方式: 共有8条查询结果,搜索用时 46 毫秒
1
1.
2.
It is of paramount importance to study salinity tolerance of commercially important crustaceans, such as the pink shrimp Farfantepenaeus paulensis to determine possible mortality causes in the wild and in aquaculture in oligohaline waters. The aim of this study was to determine the lethal salinity concentration (LC50) for juvenile pink shrimp F. paulensis and measure its oxygen consumption and ammonia excretion at different salinity levels. Shrimp of two length classes (49.4?±?4.3 and 78.5?±?5.5?mm) were placed in 10-L containers and exposed to salinity levels of 35, 30, 25, 20, 15, 10 and 5. The experiments were tripled, with seven shrimp in each container. The average lethal concentration (LC50s) for an exposure of 24?h was 13.33 (11.26–15.78) and 10.26 (8.60–12.64), respectively, for the two classes of juveniles. For an exposure of 48?h, LC50s were 12.71 (10.68–15.12) for the larger animals and 9.20 (7.34–11.52) for the smaller ones. There was an inverse relationship between salinity and rates of oxygen consumption and ammonia excretion. The average reduction in specific oxygen consumption in salinities 20, 25 and 30 showed a decrease in metabolic rate of 63, 80 and 82%, respectively, in relation to salinity level 0. The same occurred for the averages of ammonia excretion at salinity levels of 15, 20, 25, 30 and 35, which represented low metabolic rates of 57, 61, 70, 71 and 74% respectably in relation to salinity level 0.  相似文献   
3.
Inorganic sulfur turnover was examined in oligohaline (salinity < 2 g kg-1) Chesapeake Bay sediments during the summer. Cores incubated for < 3 hr exhibited higher sulfate reduction (SR) rates (13–58 mmol m-2 d-1) than those incubated for 3–8 hr (3–8 mmol m-2 d-1). SR rates (determined with35SO 4 2- ) increased with depth over the top few cm to a maximum at 5 cm, just beneath the boundary between brown and black sediment. SR rates decreased below 5 cm, probably due to sulfate limitation (sulfate < 25 μM). Kinetic experiments yielded an apparent half-saturating sulfate concentration (Ks) of 34 μM, ≈ 20-fold lower than that determined for sediments from the mesohaline region of the estuary. Sulfate loss from water overlying intact cores, predicted on the basis of measured SR rates, was not observed over a 28-hr incubation period. Reduction of35SO 4 2- during diffusion experiments with intact core segments from 0–4 and 5–9 cm horizons was less than predicted by non-steady state diagenetic models based on35SO 4 2- reduction in whole core injection experiments. The results indicate that net sulfate flux into sediments was an order of magnitude lower than the gross sulfur turnover rate. Solid phase reduced inorganic sulfur concentrations were only 2–3 times less than those in sediments from the mesohaline region of the Bay, despite the fact that oligohaline bottom water sulfate concentrations were 10-fold lower. Our results demonstrate the potential for rapid SR in low salinity estuarine sediments, which are inhabited by sulfate-reducing bacteria with a high affinity for sulfate, and in which sulfide oxidation processes replenish the pore water sulfate pool on a time scale of hours.  相似文献   
4.
Sea level rise may alter salinity and inundation regimes and create patches of open water in oligohaline coastal marshes, potentially affecting the composition and germination of seed bank species. We conducted seedling emergence experiments to: (1) examine the effects of standing vegetation on the seed banks of three oligohaline marsh communities in coastal Louisiana (dominated by Paspalum vaginatum Sw., Sagittaria lancifolia L., or Spartina patens (Ait.) Muhl., respectively); and (2) investigate the effects of salinity and inundation regime on germination of seed bank species. We also studied the effect of a temporary increase in salinity (to simulate a salt water intrusion event) on the viability of buried seeds. We found that the presence or absence of vegetation within a community affected the abundance of some species in the seed bank but had little effect on species composition. Also, the seed banks of the three communities exhibited considerable overlap in species composition and had similar species richness (10–11) and diversity (antilog Shannon-Weaver diversity index = 6.5–7.1), despite differences in vegetation type. Higher salinities and flooding reduced seedling emergence for most species; few species emerged at salinities above four parts per thousand (ppt), and only Sagittaria lancifolia and Eleocharis parvula germinated well under flooded conditions. A temporary increase in salinity did not affect species richness or seedling emergence of most species. Our results suggest that differences in vegetation may have little effect on the composition of seed banks of oligohaline marshes. However, higher salinities and greater depth and duration of inundation (anticipated as global sea level continues to rise) may decrease recruitment of seed bank species, reducing their abundance in oligohaline marsh communities.  相似文献   
5.
This paper synthesizes research conducted dusring the first 5–6 years of the Florida Coastal Everglades Long-Term Ecological Research Program (FCE LTER). My objectives are to review our research to date, and to present a new central theme and conceptual approach for future research. Our research has focused on understanding how dissolved organic matter (DOM) from upstream oligotrophic marshes interacted with a marine source of the limiting nutrient, phosphorus (P), to control productivity in the oligohaline estuarine ecotone. We have been working along freshwater to marine transects in two drainage basins located in Everglades National Park (ENP). The Shark River Slough transect (SRS) has a direct connection to the Gulf of Mexico, providing this estuarine ecotone with a source of marine P. The oligohaline ecotone along our southern Everglades transect (TS/Ph), however, is separated from this marine P source by the Florida Bay estuary. We originally hypothesized an ecosystem productivity peak in the SRS ecotone, driven by the interaction of marine P and Everglades DOM, but no such productivity peak in the TS/Ph ecotone because of this lack of marine P. Our research to date has tended to show the opposite pattern, however, with many ecosystem components showing enhanced productivity in the TS/Ph ecotone, but not in the SRS ecotone. Water column P concentrations followed a similar pattern, with unexpectedly high P in the TS/Ph ecotone during the dry season. Our organic geochemical research has shown that Everglades DOM is more refractory than originally hypothesized. We have also begun to understand the importance of detrital organic matter production and transport to ecotone dynamics and as the base of aquatic food webs. Our future research will build on this substantial body of knowledge about these oligotrophic estuaries. We will direct our efforts more strongly on biophysical dynamics in the oligohaline ecotone regions. Specifically, we will be focusing on inputs to these regions from four primary water sources: freshwater Everglades runoff, net precipitation, marine inputs, and groundwater. We are hypothesizing that dry season groundwater inputs of P will be particularly important to TS/Ph ecotone dynamics because of longer water residence times in this area. Our organic geochemical, biogeochemical, and ecosystem energetics work will focus more strongly on the importance of detrital organics and will take advantage of a key Everglades Restoration project, scheduled for 2008 or 2009, that will increase freshwater inputs to our SRS transect only. Finally, we will also begin to investigate the human dimensions of restoration, and of a growing population in south Florida that will become increasingly dependent on the Everglades for critical ecosystem services (including fresh water) even as its growth presents challenges to Everglades sustainability.  相似文献   
6.
In the oligohaline Alloway Creek watershed of the upper Delaware Bay, invasive Phragmites australis (Common reed; hereafter Phragmites) has been removed in an attempt to restore tidal marshes to pre‐invasion form and function. In order to determine the effects of Phragmites on nekton use of intertidal creeks and to evaluate the success of this restoration, intertidal creek nekton assemblages were sampled with weirs from May to November for 7 years (1999‐2005) in three marsh types: natural Spartina alterniflora (Smooth cordgrass; hereafter Spartina), sites treated for Phragmites removal (hereafter referred to as Treated), and invasive Phragmites marshes. Replicate intertidal creek collections in all three marsh types consisted primarily of resident nekton and were dominated by a relatively low number of ubiquitous intertidal species. The Treated marsh nekton assemblage was distinguished by greater abundances of most nekton, especially Fundulus heteroclitus (Mummichog). Phragmites had little impact on nekton use of intertidal creeks over this period as evidenced by similar nekton assemblages in the Spartina and Phragmites marshes for most years. Long‐term assemblage‐level analyses and nekton abundances indicated that the Treated marsh provided enhanced conditions for intertidal creek nekton. The response of intertidal creek nekton suggests that the stage of the restoration may influence the results of comparisons between the marsh types and should be considered when evaluating marsh restorations.  相似文献   
7.
The freshwater fish assemblage in most estuaries is not as species rich as the marine assemblage in the same systems. Coupled with this differential richness is an apparent inability by most freshwater fish species to penetrate estuarine zones that are mesohaline (salinity: 5·0–17·9), polyhaline (salinity: 18·0–29·9) or euhaline (salinity: 30·0–39·9). The reason why mesohaline waters are avoided by most freshwater fishes is difficult to explain from a physiological perspective as many of these species would be isosmotic within this salinity range. Perhaps, a key to the poor penetration of estuarine waters by freshwater taxa is an inability to develop chloride cells in gill filament epithelia, as well as a lack of other osmoregulatory adaptations present in euryhaline fishes. Only a few freshwater fish species, especially some of those belonging to the family Cichlidae, have become fully euryhaline and have successfully occupied a wide range of estuaries, sometimes even dominating in hyperhaline systems (salinity 40+). Indeed, this review found that there are few fish species that can be termed holohaline (i.e. capable of occupying waters with a salinity range of 0–100+) and, of these taxa, there is a disproportionally high number of freshwater species (e.g. Cyprinodon variegatus, Oreochromis mossambicus and Sarotherodon melanotheron). Factors such as increased competition for food and higher predation rates by piscivorous fishes and birds may also play an important role in the low species richness and abundance of freshwater taxa in estuaries. Added to this is the relatively low species richness of freshwater fishes in river catchments when compared with the normally higher diversity of marine fish species for potential estuarine colonization from the adjacent coastal waters. The almost complete absence of freshwater fish larvae from the estuarine ichthyoplankton further reinforces the poor representation of this guild within these systems. An explanation as to why more freshwater fish species have not become euryhaline and occupied a wide range of estuaries similar to their marine counterparts is probably due to a combination of the above described factors, with physiological restrictions pertaining to limited salinity tolerances probably playing the most important role.  相似文献   
8.
1. When multiple stressors have interactive effects they can lead to important changes in ecosystem function. We examined how three stressors affected the plant community in an oligohaline marsh in southeastern Louisiana, U.S.A. These stressors included herbivory (mostly by the introduced rodent Myocastor coypus ), disturbance (herbicide application) and nutrient enrichment (three levels of N–P–K fertilizer). Sampling was conducted six times over 4 years.
2. Recovery after disturbance was slow, such that after 26 months biomass in disturbed plots was 36% that of controls. Slow recovery appeared to be due to herbivory, as exclusion of herbivores for 14 months led to much more biomass compared to non-excluded plots. Exclusion did not, however, aid recovery of species richness; this recovery required 51 months in total.
3. Nutrient enrichment increased biomass by 41% and decreased species richness by c. 20% in later sampling periods. Decreased species richness was due primarily to a reduced ability of dominant species to co-exist (as determined with Hill's diversity number N1). Nutrient enrichment did not interact with the other treatments.
4. Disturbance favoured two grasses ( Echinochloa crus-galli and Leptochloa fascicularis ), while lack of disturbance favoured two herbs ( Sagittaria lancifolia and Polygonum punctatum ) and two vines ( Ipomoea sagittata and Cuscuta pentagona ). Nutrient enrichment positively affected abundance of two species ( C. pentagona and L. fascicularis ). Herbivory did not affect species composition.
5. The effect of one stressor (experimental disturbance) on plant biomass depended on the strength of another stressor (herbivory). Nutrient enrichment was also important in affecting the plant community, but only as a single stressor. All effects changed over time, and it was clear that to understand properly the effects of multiple stressors, long-term, manipulative field experiments are necessary.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号