首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   336篇
  免费   16篇
  国内免费   9篇
  2023年   2篇
  2022年   6篇
  2021年   7篇
  2020年   8篇
  2019年   6篇
  2018年   7篇
  2017年   9篇
  2016年   6篇
  2015年   5篇
  2014年   18篇
  2013年   20篇
  2012年   13篇
  2011年   12篇
  2010年   14篇
  2009年   21篇
  2008年   19篇
  2007年   8篇
  2006年   8篇
  2005年   13篇
  2004年   10篇
  2003年   9篇
  2002年   17篇
  2001年   14篇
  2000年   15篇
  1999年   8篇
  1998年   5篇
  1997年   5篇
  1996年   11篇
  1995年   6篇
  1994年   3篇
  1993年   4篇
  1992年   3篇
  1991年   5篇
  1990年   7篇
  1989年   3篇
  1988年   10篇
  1987年   4篇
  1986年   1篇
  1985年   3篇
  1984年   3篇
  1983年   4篇
  1982年   4篇
  1981年   1篇
  1980年   2篇
  1978年   1篇
  1975年   1篇
排序方式: 共有361条查询结果,搜索用时 15 毫秒
1.
植物在不同的逆境条件下可以生成一类受脱落酸(ABA)诱导的蛋白质[脱落酸响应蛋白(ABAresPonsiveProtein,RABpr。tein)](Bray1993)。RAB蛋白分布在不同的物种之中,许多[如Lea(Lateembryogen-。isabundant)蛋白(Dure1993)]形成于植物胚胎成熟失水过程中,但也有一些是植物受到不同逆境处理后在营养器官内所形成的「如脱水蛋白(Dehrdrin)](Dure1993)。已发现的70余个RAB蛋白中,有30余个属于脱水蛋白。(Close等1993)RAB蛋白在植物体内的功能目前尚不了解(Bray1993)。由蛋白质的氨基酸组成分析表明,这些…  相似文献   
2.
Plasmalemma-rich microsomal vesicles were prepared from whole leaf and acid-washed epidermal tissue of Vicia faba L. cv. Osnabrücker Markt by aqueous two-phase partitioning in dextran T-500 and polyethylenglycol 1350 aqueous phases. These vesicles were tightly sealed and predominantly right-side out, and contained a K+ -stimulated, mg2+-dependent and vanadate-sensitive ATPase. The enzyme from both tissues exhibited nearly identical properties: pH optimum 6.4, Km for ATP 0.60 mM(whole leaf) and 0.67 mM (epidermis). Vmax -480 nmol (mg protein)1 min1 (whole leaf) and 510 nmol (mg protein)1 min1 (epidermis), I50 (Na3,VO4) 7.5 μM (whole leaf) and 15 μM (epidermis). The enzyme was not inhibited by NO3(50 mM)or sodium azide (I mM). DCCD (20 μM) reduced enzyme activity to 50% (whole leaf) and 58% (epidermis), gramicidin S (20 μM) to 36% (whole leaf) and 41%(epidermis). Ca2+ inhibited the ATPase [I50, C2+: 0.5 mM(whole leaf) and 0.8 mM(epidermis)]. Ca2+ inhibited the ATPase [I50, C2+ 0.5 mM(whole leaf) und 0.8 (epidermis)]. The vanadate-sensitive ATPase from whole leaf and epidermal tissue was slightly but significantly stimulated by fusicoccin (FC) at a concentration (0.13 μM) promoting stomatal opening. The stimulation was not seen in the solubilized ATPase. Stomata of the cultivar used here were insensitive lo (±)ABA up to 2 μM level which is effective in most other cultivars and species. Likewise, at this concentration no effect of ABA on the activity of the epidermal ATPase was observed. The data are discussed with respect to the interaction of FC and ABA with the ATPase.  相似文献   
3.
Stomatal sensing of the environment   总被引:1,自引:0,他引:1  
The effects of environmental factors on stomatal behaviour are reviewed and the questions of whether photosynthesis and transpiration eontrol stomata or whether stomata themselves control the rates of these processes is addressed. Light affects stomata directly and indirectly. Light can act directly as an energy source resulting in ATP formation within guard cells via photophosphorylation, or as a stimulus as in the case of the blue light effects which cause guard cell H+ extrusion. Light also acts indirectly on stomata by affecting photosynthesis which influences the intercellular leaf CO2 concentration ( C i). Carbon dioxide concentrations in contact with the plasma membrane of the guard cell or within the guard cell acts directly on cell processes responsible for stomatal movements. The mechanism by which CO2 exerts its effect is not fully understood but, at least in part, it is concerned with changing the properties of guard cell plasma membranes which influence ion transport processes. The C i may remain fairly constant for much of the day for many species which is the result of parallel responses of stomata and photosynthesis to light. Leaf water potential also influences stomatal behaviour. Since leaf water potential is a resultant of water uptake and storage by the plant and transpirational water loss, any factor which affects these processes, such as soil water availability, temperature, atmospheric humidity and air movement, may indirectly affect stomata. Some of these factors, such as temperature and possibly humidity, may affect stomata directly. These direct and indirect effects of environmental factors interact to give a net opening response upon which is superimposed a direct effect of stomatal circadian rhythmic activity.  相似文献   
4.
Michael R. Blatt 《Planta》1990,180(3):445-455
Evidence of a role for abscisic acid (ABA) in signalling conditions of water stress and promoting stomatal closure is convincing, but past studies have left few clues as to its molecular mechanism(s) of action; arguments centred on changes in H+-pump activity and membrane potential, especially, remain ambiguous without the fundamental support of a rigorous electrophysiological analysis. The present study explores the response to ABA of K+ channels at the membrane of intact guard cells ofVicia faba L. Membrane potentials were recorded before and during exposures to ABA, and whole-cell currents were measured at intervals throughout to quantitate the steady-state and time-dependent characteristics of the K+ channels. On adding 10 M ABA in the presence of 0.1, 3 or 10 mM extracellular K+, the free-running membrane potential (V m) shifted negative-going (–)4–7 mV in the first 5 min of exposure, with no consistent effect thereafter. Voltage-clamp measurements, however, revealed that the K+-channel current rose to between 1.84- and 3.41-fold of the controls in the steady-state with a mean halftime of 1.1 ± 0.1 min. Comparable changes in current return via the leak were also evident and accounted for the minimal response inV m. Calculated atV m, the K+ currents translated to an average 2.65-fold rise in K+ efflux with ABA. Abscisic acid was not observed to alter either K+-current activation or deactivation.These results are consistent with an ABA-evoked mobilization of K+ channels or channel conductance, rather than a direct effect of the phytohormone on K+-channel gating. The data discount notions that large swings in membrane voltage are a prerequisite to controlling guard-cell K+ flux. Instead, thev highlight a rise in membranecapacity for K+ flux, dependent on concerted modulations of K+-channel and leak currents, and sufficiently rapid to account generally for the onset of K+ loss from guard cells and stomatal closure in ABA.  相似文献   
5.
Phosphoenolpyruvate carboxylase (PEPCase; EC 4.1.1.31) activity was found to be modulated by light and darkness when measured in the presence of K+, which had been added to induce swelling of guard-cell protoplasts (GCPs) from Vicia faba L., whereas no modulation was detected in the absence of K+ (PEPcase activity remained constant at 1.5±0.15 pmol PEP metabolized · GCP–1 ·h–1; subsequently, pmol GCP–1 ·h–1 will be used). The activity of PEPCase increased by 100% (from 1.5 to 3 pmol·protoplast–1·h–1) in darkness and by 200% (from 1.7 to 5 pmol·protoplast–1· h–1) in light and oscillations in activity of these magnitudes were repeated at intervals of 2 min (dark) and 2.5 min (light) for a period of 10 min during K+-induced increase in the volume of GCPs. The oscillations were reflected in changes in malate-pool sizes determined in plastids, mitochondria and the supernatant fraction (consisting of the cytosol and the vacuole). Malate probably functioned as a mitochondrial substrate, thus supplying ATP for K+ uptake and the swelling of the protoplasts. On the basis of the present paper and previous results (H. Schnabl and B. Michalke 1988, Life Sci. Adv. Plant Physiol. 7, 203–207) involving adenine nucleotidepool sizes in fractionated GCPs, a model is proposed to explain the cause-effect relationship between K+, PEPCase, the cytosolic and mitochondrial malate levels and ATP levels during the K+-induced increase of GCP volume.Abbreviations GCP dtguard-cell protoplast - PEP phosphoenol-pyruvate - PEPCase PEP carboxylase The authors thank Professor Hermann Schnabl, University of Stuttgart (FRG), for his assistance in applying the graph theory analysis. This work was supported by Deutsche Forschungsgemeinschaft to H.S.  相似文献   
6.
Commelina cammunis L., a monocotyledonous plant whose stomata are highly sensitive to calcium ions, was used to study calmodulin (CaM) involvement in stomatal movements. CaM was detected and quantified in guard cell and mesophyll cell protoplasts by western blot and by 45Ca2+-overlays. CaM was found to be 3- to 7-fold more abundant on a per protein basis in guard cell than in mesophyll cell protoplasts. Numerous guard cell proteins that bind CaM in a Ca2+-dependent manner were detected by gold-labelled CaM overlays. Using bioassays with epidermal strips, different CaM-antagonists were found to induce a net stimulation of stomatal opening in darkness or under illumination (trifluoperazine > compound 48/80 ∼ fluphenazine > W7 > W5). As CaM is frequently involved in the regulation of phosphorylation processes, the effects of different inhibitors of protein kinases on stomatal movements were studied. In red plus blue light, a promotion of the stomatal aperture was observed in the nanomolar range with K252a and KT5926 and in the micromolar range with KT5720 ≫ ML7 ∼ ML9 ≫ H7 > KN62. Only the inhibitors with a high specificity for Ca2+-CaM dependent protein kinases (K252a, KT5926, ML7, ML9) triggered a stomatal opening in darkness and increased stomatal aperture in red plus blue light. Taken together, these data strongly suggest that a Ca2+- or a Ca2+-CaM-dependent protein kinase plays a central role in the calcium transduction pathway leading to the maintaining of stomatal closure.  相似文献   
7.
The activation by abscisic acid (ABA) of current through outward-rectifying K+ channels and its dependence on cytoplasmic pH (pHi) was examined in stomatal guard cells of Vicia faba L. Intact guard cells were impaled with multibarrelled and H+-selective microelectrodes to record membrane potentials and pHi during exposures to ABA and the weak acid butyrate. Potassium channel currents were monitored under voltage clamp and, in some experiments, guard cells were loaded with pH buffers by iontophoresis to suppress changes in pHi. Following impalements, stable pHi values ranged between 7.53 and 7.81 (7.67±0.04, n = 17). On adding 20 M ABA, pHi rose over periods of 5–8 min to values 0.27±0.03 pH units above the pHi before ABA addition, and declined slowly thereafter. Concurrent voltage-clamp measurements showed a parallel rise in the outward-rectifying K+ channel current (IK, out) and, once evoked, both pHi and IK, out responses were unaffected by ABA washout. Acid loads, imposed with external butyrate, abolished the ABA-evoked rise in IK, out. Butyrate concentrations of 10 and 30 mM (pH0 6.1) caused pHi to fall to values near 7.0 and below, both before and after adding ABA, consistent with a cytoplasmic buffer capacity of 128±12 mM per pH unit (n = 10) near neutrality. Butyrate washout was characterised by an appreciable alkaline overshoot in pHi and concomitant swell in the steady-state conductance of IK, out. The rise in pHi and iK, out in ABA were also virtually eliminated when guard cells were first loaded with pH buffers to raise the cytoplasmic buffer capacity four- to sixfold; however, buffer loading was without appreciable effect on the ABA-evoked inactivation of a second, inward-rectifying class of K+ channels (IK, in). The pHi dependence of IK, out was consistent with a cooperative binding of at least 2H+ (apparent pKa = 8.3) to achieve a voltage-independent block of the channel. These results establish a causal link previously implicated between cytoplasmic alkalinisation and the activation of IK, out in ABA and, thus, affirm a role for H+ in signalling and transport control in plants distinct from its function as a substrate in H+-coupled transport. Additional evidence implicates a coordinate control of IK, in by cytoplasmic-free [Ca2+] and pHi.Abbreviations ABA abscisic acid - [Ca2+]i cytoplasmic free [Ca2+]i - EK K+ equilibrium potential - IK, out, IK, in outward-, inward-rectifying K+ channel (current) - I-V current-voltage (relation) - Mes 2-(N-morpholino)ethanesulfonic acid - pHi cytoplasmic pH - Tes 2-{[2-hydroxy-1,1-bis(hydroxymethyl)ethyl]-amino}ethanesulfonic acid - Vm membrane potential We are grateful to G. Thiel (Pflanzenphysiologisches Institut, Universität Göttingen, Germany) for helpful discussions. This work was possible with equipment grants-in-aid from the Gatsby Charitable Foundation, the Royal Society and the University of London Central Research Fund. F.A. holds a Sainsbury Studentship.  相似文献   
8.
H. Schnabl  C. Kottmeier 《Planta》1984,162(3):220-225
Properties of phosphoenolpyruvate (PEP) carboxylase (EC 4.1.1.31) obtained from isolated guard-cell protoplasts of Vicia faba L. were determined following rapidly desalting of the extract on a Sephadex G 25 column. The activity of PEP carboxylase was measured as a function of PEP and malate concentration, pH and K+ concentration within 2–3 min after homogenization of the guard-cell protoplasts. The activity of this enzyme was stimulated by PEP concentrations of 0.1 to 0.75 mM and by K+ ions (12 mM), but inhibited by PEP concentrations above 1 mM and by malate. Changes in the Km(PEP) and Vmax values with increasing malate concentrations (2.5 and 5 mM) indicate that the malate level, varying in relation to the physiological state of guard cells, plays an important role in regulating the properties of phosphoenolpyruvate carboxylase.Abbreviations CAM Crassulacean acid metabolism - GCP guard-cell protoplast - PEP phosphoenolpyruvate Dedicated to Professor Dr. Hubert Ziegler on the occasion of his 60th birthday  相似文献   
9.
Guard cell protoplasts of Vicia faba were immobilized in cross-linked Ca-alginate. No visible morphological changes were detected under the light microscope over a period of 14 days. The entrapped cells reacted normally to changes of the external osmolarity by shrinking and swelling. Addition of the calcium complexing agent, citrate, led to dissolution of the matrix. After reequilibration with Ca ions the released cells regained their ability to swell and shrink in response to external stress. The released protoplasts could be stained with the vital dye, neutral which was accumulated in the vacuoles. It should also be noted that the protoplasts can be transported when immobilized.  相似文献   
10.
In modern man the pitch of the occlusal plane may vary along the tooth-row. When anterior cheek-teeth show a plane sloping upward palatally, whilst that on posterior cheek-teeth slopes upward buccally, there results a twisted or helicoidal occlusal plane (Ackermann). Several hypotheses have been proposed for the structural basis of the helicoidal occlusal plane. Campbell's proposal ('25) has gained widest acceptance, namely that the helicoid results from anteroposterior differences in upper and lower alveolar arch width. In the early 1960s, while studying the Olduvai hominids assigned to Homo habilis, the author noted changing occlusal slopes along the tooth-row and a slight helicoid, although these featues had not been noted in other early hominids. Subsequently, Wallace showed a total absence of the helicoid from South African australopithecines, and its presence in Swartkrans Homo, SK 45 and SK 80. Recent studies confirm the presence of the helicoid in all available specimens of H. habilis, including Stw 53 found at Sterkfontein in 1976. Hence, this trait may distinguish between Australopithecus and early Homo. Measurements of the maxillary arch widths have shown that, whereas in Australopithecus arch widths increase to a maximum at M3, in early Homo maxillary arch widths are greatest at M2. The decline in posterior maxillary arch width is part of a general reduction of that region. Thus despite striking elongation of premolars and M1 in early Homo, M2 and M3 are mesiodistally abbreviated. It is hypothesized that the onset of posterior arch reduction, with the appearance of a helicoid, was a structural and functional concomitant of the transition from the presumed australopithecine ancestor to H. habilis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号