首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9篇
  免费   0篇
  2020年   1篇
  2019年   1篇
  2008年   1篇
  2007年   3篇
  2002年   2篇
  2001年   1篇
排序方式: 共有9条查询结果,搜索用时 421 毫秒
1
1.
Two main possibilities regarding glacial survival of the mountain flora of the Alps during the Quaternary have been discussed: the tabula rasa and the nunatak hypotheses. Eritrichium nanum (L.) Gaudin (Boraginaceae) is a perennial cushion plant, occurring at high elevations of the Central Alps and having a preference for extreme habitats. It belongs to a group of high-alpine plants, for which in situ glacial survival on nunataks is ecologically possible. By investigating 20 populations of E. nanum of potential nunatak and peripheral refugial regions using amplified fragment length polymorphism, considerable genetic differences between populations from the Central Alps and populations from peripheral refugia were detected; hence, the latter probably did not serve as potential sources for the re-colonization of the Central Alps after glaciation. Genetic variation was hierarchically structured (AMOVA), and three genetically distinct regions could be identified in the Central Alps. Two of these, the Penninic and Rhaetic Alps, correspond to nunatak regions proposed in the biogeographic literature. Populations from the Lepontic Alps formed a third genetic group. Genetic correlation (Mantel statistics) was highest within populations, with a modest decline among populations within specific nunatak regions and a negative correlation outside the genetic influence of specific nunatak regions. In situ glacial survival in E. nanum could be a model for the Quaternary history of other alpine plants, especially those that also occur at high elevations and in similar habitats.  相似文献   
2.
Polymerase chain reaction-restriction fragment length polymorphisms (PCR-RFLPs) and sequence analysis of noncoding regions of chloroplast DNA were used to investigate 37 populations of Eritrichium nanum covering its total distribution area, the European Alps. There was no haplotypic variation within the populations, and most haplotypes were restricted to single sites or to neighbouring populations, suggesting low levels of long distance gene flow via seeds. The present geographical distribution of haplotypes probably reflects an ancient geographical pattern within two regions in the intensely glaciated western and eastern central Alps identified as genetic hotspot areas. These two regions contained seven of the total of 11 haplotypes, including many of the most derived ones. The divergent haplotypes formed closely related groups, which supported a separate evolution of these haplotypes in these two regions and, more importantly, gave strong evidence for the in situ survival of these populations on nunataks within the western and eastern central Alps during Pleistocene glaciation. This result is in concordance with a previous study on E. nanum using nuclear markers. Only one haplotype was common and widespread throughout the distributional range of E. nanum. At the same time, it was the evolutionarily basal-most and all other haplotypes were best described as its descendants. This haplotype is hypothesized to be genetically identical to a Tertiary Alpine colonizing ancestor, whose distribution was secondarily fragmented and infiltrated by derived haplotypes originating through local mutations.  相似文献   
3.
Populations of metazoan microfauna (nematodes, rotifers and tardigrades) are patchily distributed on mountain outcrops penetrating the ice sheet (nunataks) in continental Antarctica. The abundance and fauna composition of microscopic animals vary greatly also among samples from similar types of habitats. Occurrence of similar seemingly habitable sites without microfauna and sites with various combinations of animal taxa indicates that stochastic colonization processes as well as local environmental factors and historical factors influence faunal composition in a specific habitable patch. The abundance of nematodes, rotifers and tardigrades in various combinations of co-occurrence was analyzed. One objective was to investigate if biotic interactions structuring these simple communities could be observed. The 368 samples analysed originate from three kinds of habitats, viz. mosses, ornithogenic soils and fellfield soils, obtained from 14 nunataks in Dronning Maud Land, East Antarctica. It is suggested that high population densities of any of the three animal groups, when they were found alone and lower densities, when they coexisted with other taxa could indicate the presence of competition or predation. However, the great variability in microfauna densities for similar habitable patches made it difficult to find significant differences among population densities in samples with varying complexity.  相似文献   
4.
It has been hypothesized that the subalpine Erinus alpinus survived the Pleistocene glaciation in southern French refugia peripheral to the Alps and postglacially immigrated to its northern Alpine distribution (tabula rasa hypothesis). However, E. alpinus is also known from nunataks in the northern Prealps. PCR–RFLP of the cpDNA revealed no variation, whereas AFLPs identified three phylogeographical groups among the 22 populations: (1) a central Swiss group, (2) a single central Swiss population on Mount Rigi, and (3) all other populations located to the west and east of the central Swiss group (west-eastern populations). The population representing the putative French refugium was not distinct from the west-eastern populations but was different from the populations of central Switzerland. We consider this support for locally restricted in situ survival of E. alpinus in the northern Prealps or nearby Jura mountains (dating back to 60–28 ky BP). However, the west-eastern gene-pool probably immigrated postglacially from southern France through the prealpine lowlands (not before 14.6 kyr BP), skirting central Switzerland. The near-absence of gene flow among the central Swiss and the west-eastern populations may be the reason why these historical genetic patterns are still detectable.  © 2002 The Linnean Society of London, Biological Journal of the Linnean Society , 2002, 77, 87–103.  相似文献   
5.
Whether alpine plant species survived Pleistocene glaciations in situ on high alpine nunatak mountains is still under debate. To test this hypothesis, Senecio halleri, a high alpine and endemic species with a narrow distribution range in the European Alps, was chosen as a model organism. Polymerase chain reaction-restriction fragment length polymorphisms of chloroplast DNA (cpDNA PCR-RFLPs) were used in a phylogeographic analysis of 14 populations of S. halleri, covering its total distribution area. The results of haplotype diversity and distribution gave evidence of in situ glacial survival on siliceous central-alpine nunatak mountains in two areas, southwest and northeast of the Aosta valley. According to the absence of genetic differentiation between these two nunatak areas (based on amova), nested clade analysis implied a history of preglacial gene flow, in situ survival and extinction of intermediate populations during glaciation and postglacial stepwise recolonization of peripheral and intermediate areas.  相似文献   
6.
Parisod C  Besnard G 《Molecular ecology》2007,16(13):2755-2767
Past climatic changes and especially the ice ages have had a great impact on both the distribution and the genetic composition of plant populations, but whether they promoted speciation is still controversial. The autopolyploid complex Biscutella laevigata is a classical example of polyploidy linked to glaciations and is an interesting model to explore migration and speciation driven by climate changes in a complex alpine landscape. Diploid taxa survived the last glacial maximum in several never-glaciated areas and autotetraploids are clearly dominant in the central parts of the Alps; however, previous range-wide studies failed to identify their diploid ancestor(s). This study highlights the phylogeographical relationships of maternal lineages in the Western Alps and investigates the polyploidy process using plastid DNA sequences (trnS-trnG and trnK-intron) combined with plastid DNA length polymorphism markers, which were transferable among Brassicaceae species. Twenty-one distinct plastid DNA haplotypes were distinguished in 67 populations densely sampled in the Western Alps and main lineages were identified by a median-joining network. The external Alps harboured high levels of genetic diversity, while the Central Alps contained only a subset of haplotypes due to postglacial recolonization. Several haplotypes were restricted to local peripheral refugia and evidence of in situ survival in central nunataks was detected by the presence of highly differentiated haplotypes swamped by frequent ones. As hierarchical genetic structure pointed to an independent evolution of the species in different biogeographical districts, and since tetraploids displayed haplotypes belonging to different lineages restricted to either the northern or the southern parts of the Alpine chain, polytopic autopolyploidy was also apparent in the Western Alps.  相似文献   
7.
Temperate mountain ranges such as the European Alps have been strongly affected by the Pleistocene glaciations. Glacial advances forced biota into refugia, which were situated either at the periphery of mountain ranges or in their interior. Whereas in the Alps peripheral refugia have been repeatedly and congruently identified, support for the latter scenario, termed “nunatak hypothesis,” is still limited and no general pattern is recognizable yet. Here, we test the hypothesis of nunatak survival for species growing in the high alpine to subnival zones on siliceous substrate using the cushion plant Androsace alpina (Primulaceae), endemic to the European Alps, as our model species. To this end, we analyzed AFLP and plastid DNA sequence data obtained from a dense and range‐wide sampling. Both AFLPs and plastid sequence data identified the southwestern‐most population as the most divergent one. AFLP data did not allow for discrimination of interior and peripheral populations, but rather identified two to three longitudinally separated major gene pools. In contrast, in the eastern half of the Alps several plastid haplotypes of regional or local distribution in interior ranges—the Alpine periphery mostly harbored a widespread haplotype—were indicative for the presence of interior refugia. Together with evidence from other Alpine plant species, this study shows that in the eastern Alps silicicolous species of open habitats in the alpine and subnival zone survived, also or exclusively so, in interior refugia. As the corresponding genetic structure may be lost in mostly nuclear‐derived, rapidly homogenizing marker systems such as AFLPs or RAD sequencing tags, markers not prone to homogenization, as is the case for plastid sequences (Sanger‐sequenced or extracted from an NGS data set) will continue to be important for detecting older, biogeographically relevant patterns.  相似文献   
8.
Pleistocene climate fluctuations had profound influence on the biogeographical history of many biota. As large areas in high mountain ranges were covered by glaciers, biota were forced either to peripheral refugia (and possibly beyond to lowland refugia) or to interior refugia (nunataks). However, nunatak survival remains controversial as it relies solely on correlative genetic evidence. Here, we test hypotheses of glacial survival using two high alpine plant species (the insect‐pollinated Pedicularis asplenifolia and wind‐pollinated Carex fuliginosa) in the European Alps. Employing the iDDC (integrative Distributional, Demographic and Coalescent) approach, which couples species distribution modelling, spatial and temporal demographic simulation and Approximate Bayesian Computation, we explicitly test three hypotheses of glacial survival: (a) peripheral survival only, (b) nunatak survival only and (c) peripheral plus nunatak survival. In P. asplenifolia the peripheral plus nunatak survival hypothesis was supported by Bayes factors (BF> 100), whereas in C. fuliginosa the peripheral survival only hypothesis, although best supported, could not be unambiguously distinguished from the peripheral plus nunatak survival hypothesis (BF = 5.58). These results are consistent with current habitat preferences (P. asplenifolia extends to higher elevations) and the potential for genetic swamping (i.e., replacement of local genotypes via hybridization with immigrating genotypes [expected to be higher in the wind‐pollinated C. fuliginosa]). Although the persistence of plants on nunataks during glacial periods has been debated and studied over decades, this is one of the first studies to explicitly test the hypothesis instead of solely using correlative evidence.  相似文献   
9.
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号