首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  免费   2篇
  2018年   1篇
  2017年   1篇
排序方式: 共有2条查询结果,搜索用时 46 毫秒
1
1.
Among protein residues, cysteines are one of the prominent candidates to ROS‐mediated and RNS‐mediated post‐translational modifications, and hydrogen peroxide (H2O2) is the main ROS candidate for inducing cysteine oxidation. The reaction with H2O2 is not common to all cysteine residues, being their reactivity an utmost prerequisite for the sensitivity towards H2O2. Indeed, only deprotonated Cys (i.e. thiolate form, ? S?) can react with H2O2 leading to sulphenic acid formation (? SOH), which is considered as a major/central player of ROS sensing pathways. However, cysteine sulphenic acids are generally unstable because they can be further oxidized to irreversible forms (sulphinic and sulphonic acids, ? SO2H and ? SO3H, respectively), or alternatively, they can proceed towards further modifications including disulphide bond formation (? SS? ), S‐glutathionylation (? SSG) and sulphenamide formation (? SN?). To understand why and how cysteine residues undergo primary oxidation to sulphenic acid, and to explore the stability of cysteine sulphenic acids, a combination of biochemical, structural and computational studies are required. Here, we will discuss the current knowledge of the structural determinants for cysteine reactivity and sulphenic acid stability within protein microenvironments.  相似文献   
2.
Urea electrooxidation with favorable thermodynamic potential offers great promise for decoupling H2/O2 evolution from sluggish water splitting, and simultaneously mitigating the problem of urea‐rich water pollution. However, the intrinsically slow kinetics of the six‐electron transfer process impels one to explore efficient catalysts in order to enable widespread use of this catalytic system. In response, taking CoS2/MoS2 Schottky heterojunctions as the proof‐of‐concept paradigm, a catalytic model to modulate the surface charge distribution for synergistically facilitating the adsorption and fracture of chemical group in urea molecule is proposed and the mechanism of urea electrooxidation at the molecular level is elucidated. Based on density functional calculations, the self‐driven charge transfer across CoS2/MoS2 heterointerface would induce the formation of local electrophilic/nucleophilic region, which will intelligently adsorb electron‐donating/electron‐withdrawing groups in urea molecule, activate the chemical bonds, and thus trigger the decomposition of urea. Benefiting from the regulation of local charge distribution, the constructed Schottky catalyst of CoS2‐MoS2 exhibits superior urea catalytic activities with a potential of 1.29 V (only 0.06 V higher than the thermodynamic voltage of water decomposition) to attain 10 mA cm?2 as well as robust durability over 60 h. This innovational manipulation of charge distribution via Schottky heterojunction provides a model in exploring other highly efficient electrocatalysts.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号