首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
  2019年   1篇
  1995年   2篇
  1994年   1篇
排序方式: 共有4条查询结果,搜索用时 50 毫秒
1
1.
The present status of knowledge on drugs affecting food intake and presumably acting via a serotoninergic mechanism is reviewed. The mechanism of action of these drugs is analyzed at the neurochemical level. All the drugs, to various extents, inhibit the uptake of serotonin (5HT), increase the release of 5HT and decrease brain levels of 5HT and 5HIAA. However, the underlying mechanisms are not identical as exemplified by comparisons made with d-fenfluramine, d-norfenfluramine, fluoxetine, sertraline and paroxetine. An analysis of the role of 5HT in the inhibition of food intake reveals that only d-fenfluramine is inhibited by antiserotonin agents. The role of the different 5HT receptor-subtypes in this antagonism is discussed. More selective 5HT antagonists are needed to establish which 5HT receptor(s) controls food intake.  相似文献   
2.
3.
A β-cyclodextrin-bonded phase has been used to investigate the separation of the enantiomers of atenolol, oxprenolol, celiprolol, tertatolol, terbutaline, fluoxetine, norfluoxetine, and zopiclone, focusing on the importance of solvent selectivity. With cyclodextrin (CD)-bonded phases, chiral discrimination occurs because the two enantiomers of a racemate form inclusion complexes of different strengths within the CD cavity. The organic modifier molecules tend to compete with solutes for a definite number of adsorption sites on the stationary phase. Moreover, the ternary complex formation may play an important role in chiral recognition. In this study, it was of interest to estimate the influence of mobile phase modifiers with respect to solvent type (i.e., ACN, MeOH, EtOH, THF, i-PrOH, PrOH and t-BuOH), size and shape, and concentration. Solvent selectivity has been investigated by using different organic modifiers in mobile phases with the same polarity, and relationships were established between the logarithm of solvent partition coefficient (log Ps) and the three most important chromatographic parameters: retention time (t), resolution (R), and enantioselectivity (α). Thus, it seems that the hydrophobicity of the organic modifier becomes one of the dominant factors affecting the inclusion process phenomena. Further, the apparent partition coefficients of the compounds under study have been determined and a comparison has been attempted regarding the degree of their enantiomeric resolution. © 1995 Wiley-Liss, Inc.  相似文献   
4.
The antidepressant fluoxetine (FLU) and its N-demethylated metabolite, norfluoxetine (NFLU), each contains a chiral center. The combination of FLU and desipramine (DMI), another antidepressant, has been reported to be useful in treatment of depression, to dramatically increase plasma levels of DMI and also to produce more rapid β-adrenergic receptor down-regulation in brain than caused by DMI alone. We have now begun studies on the effects of this drug combination on the levels of FLU and NFLU enantiomers in the rat. In addition, the combination of FLU and iprindole (IPR) was also investigated. Male Sprague–Dawley rats were treated intraperitoneally with either normal saline vehicle, DMI (5 mg/kg/day), (R,S)-FLU (10 mg/kg/day) or DMI (5 mg/kg/day) + (R,S)-FLU (10 mg/kg/day) for 4 days. Following the last treatment, 24 h urine samples were collected. Rats were sacrificed and brains were removed. For the IPR study, rats were pretreated with either saline or IPR-HCl (11.2 mg/kg) and then treated 1 h later with (R,S)-FLU. After 5 h, the rats were sacrificed and brains were removed. Brain and urine samples were analyzed by gas chromatography with electron-capture detection for free (R)- and (S)-FLU and (R)- and (S)-NFLU after extraction and reaction with (?)-(S)-N-(trifluoroacetyl)prolyl chloride. The results from the brains of the rats treated with DMI/FLU indicate that levels of the enantiomers of both FLU and NFLU were significantly increased over those seen in the animals receiving (R,S)-FLU alone. In the IPR/FLU treated rats, an increase in the brain levels of both (R)- and (S)-FLU was noted when compared with rats receiving (R,S)-FLU alone; however, there appeared to be no increase in the brain levels of NFLU enantiomers. © 1994 Wiley-Liss, Inc.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号