首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   734篇
  免费   207篇
  国内免费   4篇
  2024年   3篇
  2023年   25篇
  2022年   21篇
  2021年   30篇
  2020年   66篇
  2019年   52篇
  2018年   59篇
  2017年   56篇
  2016年   64篇
  2015年   73篇
  2014年   68篇
  2013年   66篇
  2012年   55篇
  2011年   48篇
  2010年   36篇
  2009年   46篇
  2008年   33篇
  2007年   32篇
  2006年   14篇
  2005年   28篇
  2004年   10篇
  2003年   11篇
  2002年   9篇
  2001年   7篇
  2000年   5篇
  1999年   2篇
  1998年   3篇
  1997年   2篇
  1996年   4篇
  1995年   2篇
  1994年   2篇
  1993年   4篇
  1992年   1篇
  1991年   1篇
  1988年   1篇
  1985年   1篇
  1983年   1篇
  1981年   2篇
  1978年   1篇
  1977年   1篇
排序方式: 共有945条查询结果,搜索用时 15 毫秒
1.
2.
3.
The ecology, abundance and diversity of galatheoid squat lobsters make them an ideal group to study deep-sea diversification processes. Here, we reconstructed the evolutionary and biogeographic history of Leiogalathea, a genus of circum-tropical deep-sea squat lobsters, in order to compare patterns and processes that have affected shallow-water and deep-sea squat lobster species. We first built a multilocus phylogeny and a calibrated species tree with a relaxed clock using StarBEAST2 to reconstruct evolutionary relationships and divergence times among Leiogalathea species. We used BioGeoBEARS and a DEC model, implemented in RevBayes, to reconstruct ancestral distribution ranges and the biogeographic history of the genus. Our results showed that Leiogalathea is monophyletic and comprises four main lineages; morphological homogeneity is common within and between clades, except in one; the reconstructed ancestral range of the genus is in the Atlantic and Indian oceans (Tethys). They also revealed the divergence of the Atlantic species around 25 million years ago (Ma), intense cladogenesis 15–25 Ma and low levels of speciation over the last 5 million years (Myr). The four Leiogalathea lineages showed similar patterns of speciation: allopatric speciation followed by range expansion and subsequent stasis. Leiogalathea started diversifying during the Oligocene, likely in the Tethyan. The Atlantic lineage then split from its Indo-Pacific sister group due to vicariance driven by closure of the Tethys Seaway. The Atlantic lineage is less speciose compared with the Indo-Pacific lineages, with the Tropical Southwestern Pacific being the current centre of diversity. Leiogalathea diversification coincided with cladogenetic peaks in shallow-water genera, indicating that historical biogeographic events similarly shaped the diversification and distribution of both deep-sea and shallow-water squat lobsters.  相似文献   
4.
5.
6.
7.
Aim To estimate the rate of adaptive radiation of endemic Hawaiian Bidens and to compare their diversification rates with those of other plants in Hawaii and elsewhere with rapid rates of radiation. Location Hawaii. Methods Fifty‐nine samples representing all 19 Hawaiian species, six Hawaiian subspecies, two Hawaiian hybrids and an additional two Central American and two African Bidens species had their DNA extracted, amplified by polymerase chain reaction and sequenced for four chloroplast and two nuclear loci, resulting in a total of approximately 5400 base pairs per individual. Internal transcribed spacer sequences for additional outgroup taxa, including 13 non‐Hawaiian Bidens, were obtained from GenBank. Phylogenetic relationships were assessed by maximum likelihood and Bayesian inference. The age of the most recent common ancestor and diversification rates of Hawaiian Bidens were estimated using the methods of previously published studies to allow for direct comparison with other studies. Calculations were made on a per‐unit‐area basis. Results We estimate the age of the Hawaiian clade to be 1.3–3.1 million years old, with an estimated diversification rate of 0.3–2.3 species/million years and 4.8 × 10?5 to 1.3 × 10?4 species Myr?1 km?2. Bidens species are found in Europe, Africa, Asia and North and South America, but the Hawaiian species have greater diversity of growth form, floral morphology, dispersal mode and habitat type than observed in the rest of the genus world‐wide. Despite this diversity, we found little genetic differentiation among the Hawaiian species. This is similar to the results from other molecular studies on Hawaiian plant taxa, including others with great morphological variability (e.g. silverswords, lobeliads and mints). Main conclusions On a per‐unit‐area basis, Hawaiian Bidens have among the highest rates of speciation for plant radiations documented to date. The rapid diversification within such a small area was probably facilitated by the habitat diversity of the Hawaiian Islands and the adaptive loss of dispersal potential. Our findings point to the need to consider the spatial context of diversification – specifically, the relative scale of habitable area, environmental heterogeneity and dispersal ability – to understand the rate and extent of adaptive radiation.  相似文献   
8.
Diversification rates are critically important for understanding patterns of species richness among clades. However, the effects of climatic niche width on plant diversification rates remain to be elucidated. Based on the phylogenetic, climatic, and distributional information of angiosperms in China, a total of 26 906 species from 182 families were included in this study. We aimed to test relationships between diversification rate and climatic niche width and climatic niche width related variables (including climatic niche divergence, climatic niche position, geographic extent, and climatic niche evolutionary rate) using phylogenetic methods. We found that climatic niche divergence had the largest unique contribution to the diversification rate, while the unique effects of climatic niche width, climatic niche position, geographic extent, and climatic niche evolutionary rate on the diversification rate were negligible. We also observed that the relationship between diversification rate and climatic niche divergence was significantly stronger than the null assumption (artefactual relationship between diversification and clade-level climatic niche width by sampling more species). Our study supports the hypothesis that wider family climatic niche widths explain faster diversification rates through a higher climatic niche divergence rather than through higher geographic extent, higher climatic niche evolutionary rate, or separated climatic niche position. Hence, the results provide a potential explanation for large-scale diversity patterns within families of plants.  相似文献   
9.
The species- and genus-specific DNA content, average base composition of nuclear DNA, presence or absence of satellite DNA, the percentage of heterochromatin and other characteristics of nuclear DNA and nuclear structure allow to deduce the molecular changes which accompanied, or more probably caused, cladogenesis in the orchids studied. It is suggested that saltatory replication (generative amplification) of certain DNA sequenes, diversification of reiterated DNA sequences, and loss of DNA play an important role in the evolution of orchids.—The relationship between changes of genome composition and of nuclear structure and ultrastructure is discussed on the basis of cot curves, heterochromatin staining with Giemsa (C banding), electron microscopy of nuclei, and molecular hybridization in situ.Some aspects of this paper have been presented at the Helsinki Chromosome Conference, August 1977 (Nagl & Capesius 1977).  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号